360 research outputs found

    Antibiotic resistance in S. enterica isolated from Danish pig herds

    Get PDF
    An increase in the occurence of antibiotic resistance in Salmonella enterica and other patogenic bacteria has been observed in several countries during the last years. This development is cause for concern as it complicates the therapeutic use of antibiotics in both human and veterinary medicine. Antibiotic resistance is correlated to the use of antibiotics for therapeutic, prophylactic or growth promoting purposes. In Denmark, the occurence of resistance in Salmonella enterica is monitored as a part of the diagnostic work. The objective of this paper is to describe the level and type of antibiotic resistance in Salmonella enterica isolated from Danish pig herds in 1996

    Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates.

    Get PDF
    The incidence of human Campylobacter jejuni and C. coli infections has increased markedly in many parts of the world in the last decade as has the number of quinolone-resistant and, to a lesser extent, macrolide-resistant Campylobacter strains causing infections. We review macrolide and quinolone resistance in Campylobacter and track resistance trends in human clinical isolates in relation to use of these agents in food animals. Susceptibility data suggest that erythromycin and other macrolides should remain the drugs of choice in most regions, with systematic surveillance and control measures maintained, but fluoroquinolones may now be of limited use in the empiric treatment of Campylobacter infections in many regions

    Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis

    Get PDF
    OBJECTIVES: Large amounts of biocides are used to reduce and control bacterial growth in the healthcare sector, food production and agriculture. This work explores the effect of subinhibitory concentrations of four commonly used biocides (ethanol, hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite) on the conjugative transposition of the mobile genetic element Tn916. METHODS: Conjugation assays were carried out between Bacillus subtilis strains. The donor containing Tn916 was pre-exposed to subinhibitory concentrations of each biocide for a defined length of time, which was determined by an analysis of the transcriptional response of the promoter upstream of tet(M) using β-glucuronidase reporter assays. RESULTS: Ethanol significantly (P = 0.01) increased the transfer of Tn916 by 5-fold, whereas hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite did not significantly affect the transfer frequency. CONCLUSIONS: These results suggest that exposure to subinhibitory concentrations of ethanol may induce the transfer of Tn916-like elements and any resistance genes they contain

    Update of electronic tagging data and methodologies for Atlantic bluefin tuna in order to plan future tagging activities

    Get PDF
    This document presents the current electronic tagging information available for management strategy evaluation. This information also allows to identify gaps, in sizes and geographical areas, that should be taken into account to plan future tagging activities. It also describes the status of current electronic tag databases, advantages and disadvantages of electronic tags used on Atlantic bluefin tuna and outlines the technological advances that will allow the use of different types of tags (pop-up satellite archival, archival internal and acoustic tags) to improve the description of movements of this species. The conclusions section summarizes the progress needed to develop the use of electronic tagging on Atlantic bluefin tuna

    Genetic and migratory evidence for sympatric spawning of tropical pacific eels from Vanuatu

    Get PDF
    The spawning areas of tropical anguillid eels in the South Pacific are poorly known, and more information about their life histories is needed to facilitate conservation. We genetically characterized 83 out of 84 eels caught on Gaua Island (Vanuatu) and tagged 8 eels with pop-up satellite transmitters. Based on morphological evidence, 32 eels were identified as Anguilla marmorata, 45 as A. megastoma and 7 as A. obscura. Thirteen of these eels possessed a mitochondrial DNA sequence (control region, 527 bp) or nuclear haplotype (GTH2b, 268 bp) conflicting with their species designation. These individuals also had multi-locus genotypes (6 microsatellite loci) intermediate between the species, and 9 of these eels further possessed heterozygote genotypes at species-diagnostic nuclear single nucleotide polymorphisms (SNPs). We classified these individuals as possibly admixed between A. marmorata and A. megastoma. One A. marmorata and one A. megastoma migrated 634 and 874 km, respectively, towards the border between the South Equatorial Current and the South Equatorial Counter Current. Both species descended from around 200 m depth at night to 750 m during the day. Lunar cycle affected the upper limit of migration depths of both species. The tags remained attached for 3 and 5 mo and surfaced <300 km from the pop-up location of a previously tagged A. marmorata. A salinity maximum at the pop-up locations corresponding to the upper nighttime eel migration depths may serve as a seamark of the spawning area. The similar pop-up locations of both species and the evidence for admixture suggest that these tropical eels share a sympatric spawning area

    In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections
    corecore