69 research outputs found

    K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes

    Get PDF
    The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society

    Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in New Zealand Journal of Geology and Geophysics 54 (2011): 329-339, doi:10.1080/00288306.2011.589860.Multibeam bathymetric surveys east of the South Island of New Zealand present images of submarine volcanoes and pockmarks west of Urry Knolls on the Chatham Rise, and evidence of submarine erosion on the southern margin of the Chatham Rise. Among numerous volcanic cones, diameters of the largest reach ~2000 m, and some stand as high as 400 m above the surrounding seafloor. The tops of most of the volcanic cones are flat, with hints of craters, and some with asymmetric shapes may show flank collapses. There are hints of both northeast-southwest and northwest-southeast alignments of volcanoes, but no associated faulting is apparent. Near and to the west of these volcanoes, huge pockmarks, some more than ~1 km in diameter, disrupt bottom topography. Pockmarks in this region seem to be confined to sea floor shallower than ~1200 m, but we see evidence of deeper pockmarks at water depths of up to 2100 m on profiles crossing the Bounty Trough. The pockmark field on the Chatham Rise seems to be bounded on the south by a trough near 1200 m depth; like others, we presume that contour currents have eroded the margin and created the trough.This research was supported by the National Science Foundation under grants EAR-0409564, EAR-0409609, and EAR-0409835.2012-08-3

    K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes

    No full text
    The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society

    K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes

    Get PDF
    The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society

    Deep structure of the Demerara Plateau: From a volcanic margin to a Transform Marginal Plateau

    No full text
    The Demerara Plateau (offshore Suriname and French Guiana) is located at the junction of the Jurassic Central Atlantic and the Cretaceous Equatorial Atlantic Oceans. The study of its crustal structure is fundamental to understanding its tectonic history, its relationship with the adjacent oceanic domains and to enlightening the formation of Transform Marginal Plateaus (TMPs). This study presents two wide-angle seismic velocity models from the MARGATS cruise seismic experiment, and adjacent composite seismic reflexion lines. The plateau itself is characterized by a 30 km thick crust, subdivided into three layers, including a high velocity lower crust (HVLC). The velocities and velocity gradients do not fit values of typical continental crust but could fit with volcanic margin or Large Igneous Province (LIP) type crusts. We propose that the, possibly continental, lower crust is intruded by magmatic material and that the upper crustal layer is likely composed of extrusive volcanic rocks of the same magmatic origin, forming thick seaward dipping reflector sequences tilted to the west. This SDR complex was emplaced during hotspot related volcanic rifting preceding the Jurassic opening of the Central North Atlantic and forming the present-day western margin of the plateau. The internal limit of the SDR complex corresponds to the future limit of the eastern margin. The Demerara Plateau would therefore be an inherited Jurassic volcanic margin boarding the Central Atlantic. This margin was reworked during the Cretaceous at the eastern limit of the Jurassic SDR complex, creating the present-day northern transform margin and the eastern divergent margin along the Equatorial Atlantic. This study also highlights the major contribution of thermal anomalies such as hotspots and superposed tectonic phases in the history of TMPs, which share a great number of characteristics with Demerara
    corecore