504 research outputs found

    Thickness dependence of exchange coupling in epitaxial Fe 3 O 4/ CoFe 2 O 4 soft/hard magnetic bilayers

    Get PDF
    Epitaxial magnetic heterostructures of (soft-)Fe3O4/(hard-)CoFe2O4(001) have been fabricated with a varying thicknesses of soft ferrite from 5 to 25 nm. We report a change in the regime of magnetic interaction between the layers from rigid-coupling to exchange-spring behavior, above a critical thickness of the soft magnetic Fe3O4 layer. We show that the symmetry and epitaxial matching between the spinel structures of CoFe2O4 and Fe3O4 at the interface stabilize the Verwey transition close to the bulk value even for 5-nm-thick Fe3O4. The large interface exchange-coupling constant estimated from low-temperature M(H) data confirmed the good quality of the ferrite-ferrite interface and the major role played by the interface in the magnetization dynamics. The results presented here constitute a model system for understanding the magnetic behavior of interfaces in core/shell nanoparticles and magnetic oxide-based spintronic devices.Fil: Lavorato, Gabriel Carlos. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; ArgentinaFil: Winkler, Elin Lilian. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; ArgentinaFil: Rivas Murias, B.. Universidad de Santiago de Compostela. Facultad de Química; EspañaFil: Rivadulla, F.. Universidad de Santiago de Compostela. Facultad de Química; Españ

    Generation of non-synchronous accelerograms for evaluate the seismic bridge response, including local site amplification.

    Get PDF
    Non-synchronous seismic actions particularly affect the behaviour of infrastructures with significant longitudinal extension, as bridges, interacting with the soil at surface or below ground level. Some authors state that non synchronism may increase by a large amount the structural response. Several acceleration records relative to different points of the ground with different soil profiles at distances meaningful for bridge analyses, are not available in data banks. The objective of this work is the generation of arrays of asynchronous signals at different points in space, starting from natural accelerograms related to a given seismic event, to increase the number of the available data. The computer code GAS has been modified to use natural accelerograms. The procedure has been applied to a real case, L’Aquila main-shock, for which records in different points of the free field are known

    A degrading Bouc\u2013Wen model for the hysteresis of reinforced concrete structural elements

    Get PDF
    This paper presents a smooth hysteresis model for reinforced concrete (RC) structural elements based on the differential equation of the Bouc?Wen model. Stiffness degradation and strength degradation are defined by introducing a damage index that includes both dissipated energy and maximum displacement. The pinching effect acts directly on the stiffness of the system and is controlled by an activation energy. The degrading functions are connected to the actual processes with which the damage occurs, thereby giving each parameter a physical meaning. The simple formulation of the model allows a straightforward identification of the best-fitting parameters and an easy interpretation of the results. Applications to the cyclic behaviour of RC structural elements demonstrate that the model is well capable of describing complex hysteretic behaviours involving degradation and pinching effects

    Percutaneous Application of High Power Microwave Ablation With 150 W for the Treatment of Tumors in Lung, Liver, and Kidney: A Preliminary Experience

    Get PDF
    Objective: The aim of this study is to evaluate the feasibility, safety, and short-term effectiveness of a high-power (150 W) microwave ablation (MWA) device for tumor ablation in the lung, liver, and kidney. Methods: Between December 2021 and June 2022, patients underwent high-power MWA for liver, lung, and kidney tumors. A retrospective observational study was conducted in accordance with the Declaration of Helsinki. The MWA system utilized a 150-W, 2.45-GHz microwave generator (Emprintℱ HP Ablation System, Medtronic). The study assessed technical success, safety, and effectiveness, considering pre- and post-treatment diameter and volume, lesion location, biopsy and/or cone beam computed tomography (CBCT) usage, MWA ablation time, MWA power, and dose-area product (DAP). Results: From December 2021 to June 2022, 16 patients were enrolled for high-power MWA. Treated lesions included hepatocellular carcinoma (10), liver metastasis from colon cancer (1), liver metastasis from pancreatic cancer (1), squamous cell lung carcinoma (2), renal cell carcinoma (1), and renal oncocytoma (1). Technical success rate was 100%. One grade 1 complication (6.25%) was reported according to CIRSE classification. Overall effectiveness was 92.8%. Pre- and post-treatment mean diameters for liver lesions were 19.9 mm and 37.5 mm, respectively; for kidney lesions, 34 mm and 35 mm; for lung lesions, 29.5 mm and 31.5 mm. Pre- and post-treatment mean volumes for liver lesions were 3.4 ml and 24 ml, respectively; for kidney lesions, 8.2 ml and 20.5 ml; for lung lesions, 10.2 ml and 32.7 ml. The mean ablation time was 48 minutes for liver, 42.5 minutes for lung, and 42.5 minutes for renal ablation. The mean DAP for all procedures was 40.83 Gcm2. Conclusion: This preliminary study demonstrates the feasibility, safety, and effectiveness of the new 150 W MWA device. Additionally, it shows reduced ablation times for large lesions

    Time-dependent cyclic behavior of reinforced concrete bridge columns under chlorides-induced corrosion and rebars buckling

    Get PDF
    This study presents the results of a refined numerical investigation meant at understanding the time-dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides-induced corrosion. The chloride ingress in the cross-section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion-induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite-element method, the loss of reinforcement steel bars cross-section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross-sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns

    Positive Outcomes in Cardiac Rehabilitation: The Little Program That Could

    Get PDF
    Permission to include article in the University of Lethbridge Institutional Repository granted by the Canadian Council of Cardiovascular Nurses (CCCN).Cardiac rehabilitation programs (CRPs) are receiving increasing attention because they restore, maintain, or improve both physiologic and psychosocial client outcomes (Evenson, Rosamond & Luepker, 1998). However, less attention has been paid to the effect such programs may have on the health-related quality of life of participants. The objective of this study was to measure health-related quality of life outcomes before and after participation in a CRP. Participants were 64 clients entering one of five CRP groups at the Lethbridge Regional Hospital in southern Alberta. Participants completed the Short Form 36 Health Survey (SF-36) (Ware, 1997) both at the beginning and at the end of one 13-week CRP intervention. The SF-36 examines eight health concepts: physical functioning (PF), role-physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role-emotional (RE), and mental health (MH). Analysis showed a significant difference between the pre-test and post-test scores for six of the eight categories. Larger effect sizes were found for PF (d=.746), RP (d=657), and VT (d=.593). Smaller effects were found for BP (d=.299j, SF (d=.337J, and RE (d=.271). The findings of this study highlight improved health-related quality of life outcomes for clients participating in comprehensive cardiac rehabilitation programs

    Integral abutment bridges: Investigation of seismic soil-structure interaction effects by shaking table testing

    Get PDF
    In recent years there has been renewed interest on integral abutment bridges (IABs), mainly due to their low construction and maintenance cost. Owing to the monolithic connection between deck and abutments, there is strong soil-structure interaction between the bridge and the backfill under both thermal action and earthquake shaking. Although some of the regions where IABs are adopted qualify as highly seismic, there is limited knowledge as to their dynamic behaviour and vulnerability under strong ground shaking. To develop a better understanding on the seismic behaviour of IABs, an extensive experimental campaign involving over 75 shaking table tests and 4800 time histories of recorded data, was carried out at EQUALS Laboratory, University of Bristol, under the auspices of EU-sponsored SERA project (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The tests were conducted on a 5 m long shear stack mounted on a 3 m × 3 m 6-DOF earthquake simulator, focusing on interaction effects between a scaled bridge model, abutments, foundation piles and backfill soil. The study aims at (a) developing new scaling procedures for physical modelling of IABs, (b) investigating experimentally the potential benefits of adding compressible inclusions (CIs) between the abutment and the backfill and (c) exploring the influence of different types of connection between the abutment and the pile foundation. Results indicate that the CI reduces the accelerations on the bridge deck and the settlements in the backfill, while disconnecting piles from the cap decreases bending near the pile head

    Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV

    Full text link
    The pair production of Z bosons is studied using the data collected by the L3 detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189 GeV. All the visible final states are considered and the cross section of this process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final states containing b quarks are enhanced by a dedicated selection and their production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02 (syst.) pb. Both results are in agreement with the Standard Model predictions. Limits on anomalous couplings between neutral gauge bosons are derived from these measurements

    Search for Low Scale Gravity Effects in e+e- Collisions at LEP

    Get PDF
    Recent theories propose that quantum gravity effects may be observable at LEP energies via gravitons that couple to Standard Model particles and propagate into extra spatial dimensions. The associated production of a graviton and a photon is searched for as well as the effects of virtual graviton exchange in the processes: e+e- -> gamma gamma, ZZ, WW, mu mu, tau tau, qq and ee No evidence for this new interaction is found in the data sample collected by the L3 detector at LEP at centre-of-mass energies up to 183 GeV. Limits close to 1 TeV on the scale of this new scenario of quantum gravity are set
    • 

    corecore