185 research outputs found

    Exploitation of renewable resources with differentiated technologies: An evolutionary analysis

    Get PDF
    In this paper, we propose a dynamical model of technology adoption for the exploitation of a renewable natural resource. Each technology has a different efficiency and environmental impact. The process of technology adoption over time is modeled through an evolutionary game employed by profit maximizing exploiters. The loss in profits due to lower efficiency levels of environmentally-friendly technologies can be counterbalanced by the higher consumers' propensity to pay for greener goods. The dynamics of the resource take place in continuous time, whereas the technology choice can be revised either in continuous-time or in discrete-time. In the latter case, the model assumes the form of a hybrid system, whose dynamics is mainly explored numerically. We shows that: (1) overexploitation of the resource arises whenever the reduction in harvesting due to a lower efficiency of clean technology is more than compensated by a higher propensity to pay for greener goods; (2) the difference between the fixed costs of these technologies can be exogenously fixed to provide an incentive for adopting clean technology without affecting the long-run level of the resource; and (3) in some cases, discrete switching of the technology causes overshooting in the dynamics whereas in others it enhances the stability of the system

    Hybrid evolutionary oligopolies and the dynamics of corporate social responsibility

    Get PDF
    The diffusion of corporate social responsibility is investigated by employing a hybrid evolutionary game where a firm chooses between being either socially responsible, which implies devoting a fraction of its profit to social projects, or non-socially responsible. Consumers prize socially responsible companies by paying a higher reservation price for their products. The hybrid evolutionary framework is characterized by a quantity dynamics that describes the oligopolistic competition given firms’ belief about the composition of the industry. At regular intervals of time, this belief is endogenously updated by a retrospective comparison on the profits obtained and on the basis of an evolutionary mechanism. Assuming that firms are Nash players, that is at each instant of time they produce the Nash equilibrium-in-belief quantity, the investigation of the model reveals that an industry homogeneously populated by socially responsible firms is a stable equilibrium when the fraction of profits earmarked for socially responsible activities is sufficiently limited. However, the extra marginal profits of a socially responsible firm are reduced when the number of competitors increases, impeding the diffusion of socially responsible companies. In particular, the trade-off between a higher net margin on sales obtained by socially responsible firms and a lower level of production that reduces the profit gap between a socially responsible firm and the rest of the market shows that an increased size of the industry favors mixed oligopolies. Moreover, imposing the hypothesis of neutrality of CSR activities, the model reveals that being socially responsible is an evolutionarily stable strategy for firms and is convenient for customers. Relaxing the hypothesis of Nash players by introducing boundedly rational firms that decide their level of production according to a partial adjustment toward the best reply, the robustness of these results is confirmed

    Molecular Specification and Patterning of Progenitor Cells in the Lateral and Medial Ganglionic Eminences

    Get PDF
    We characterized intrinsic and extrinsic specification of progenitors in the lateral and medial ganglionic eminences (LGE and MGE). We identified seven genes whose expression is enriched or restricted in either the LGE: Boc, Fzd8, Ankrd43 and Ikzf1, or MGE: Mbip, Zswim5, and Adamts5. Boc, Fzd8, Mbip and Zswim5 are apparently expressed in LGE or MGE progenitors, while the remaining three are seen in the post-mitotic mantle zone. Relative expression levels are altered and regional distinctions are lost for each gene in LGE or MGE cells propagated as neurospheres; indicating that these newly identified molecular characteristics of LGE or MGE progenitors depend upon forebrain signals not available in the neurosphere assay. Analyses of Pax6Sey/Sey, Shh−/−, and Gli3XtJ/XtJ mutants suggests that LGE and MGE progenitor identity does not rely exclusively upon previously established forebrain-intrinsic patterning mechanisms. Among a limited number of additional potential patterning mechanisms, we found that extrinsic signals from the frontonasal mesenchyme are essential for Shh and Fgf8-dependent regulation of LGE and MGE genes. Thus, extrinsic and intrinsic forebrain patterning mechanisms cooperate to establish LGE and MGE progenitor identity, and presumably their capacities to generate distinct classes of neuronal progeny

    Developmental regulation of neural cell adhesion molecule in human prefrontal cortex

    Get PDF
    Neural cell adhesion molecule (NCAM) is a membrane-bound cell recognition molecule that exerts important functions in normal neurodevelopment including cell migration, neurite outgrowth, axon fasciculation, and synaptic plasticity. Alternative splicing of NCAM mRNA generates three main protein isoforms: NCAM-180, -140, and -120. Ectodomain shedding of NCAM isoforms can produce an extracellular 105–115 kDa soluble NCAM fragment (NCAM-EC) and a smaller intracellular cytoplasmic fragment (NCAM-IC). NCAM also undergoes a unique post-translational modification in brain by the addition of polysialic acid (PSA)-NCAM. Interestingly, both PSA-NCAM and NCAM-EC have been implicated in the pathophysiology of schizophrenia. The developmental expression patterns of the main NCAM isoforms and PSA-NCAM have been described in rodent brain, but no studies have examined NCAM expression across human cortical development. Western blotting was used to quantify NCAM in human postmortem prefrontal cortex in 42 individuals ranging in age from mid-gestation to early adulthood. Each NCAM isoform (NCAM-180, -140, and -120), post-translational modification (PSA-NCAM) and cleavage fragment (NCAM-EC and NCAM-IC) demonstrated developmental regulation in frontal cortex. NCAM-180, -140, and -120, as well as PSA-NCAM, and NCAM-IC all showed strong developmental regulation during fetal and early postnatal ages, consistent with their identified roles in axon growth and plasticity. NCAM-EC demonstrated a more gradual increase from the early postnatal period to reach a plateau by early adolescence, potentially implicating involvement in later developmental processes. In summary, this study implicates the major NCAM isoforms, PSA- NCAM and proteolytically cleaved NCAM in pre- and postnatal development of the human prefrontal cortex. These data provide new insights on human cortical development and also provide a basis for how altered NCAM signaling during specific developmental intervals could affect synaptic connectivity and circuit formation, and thereby contribute to neurodevelopmental disorders

    Nursing Home Revenue Source and Information Availability During the Emergency Department Evaluation of Nursing Home Residents

    Get PDF
    Lack of access to medical information for nursing home residents during Emergency Department (ED) evaluation is a barrier to quality care. We hypothesized that the quantity of information available in the ED differs based on the funding source of the resident’s nursing home

    Specific mesenchymal/epithelial induction of olfactory receptor, vomeronasal, and gonadotropin-releasing hormone (GnRH) neurons

    Get PDF
    We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs) and gonadotropin releasing hormone (GnRH) neurons—the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions, specifies the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons

    Computer-facilitated Review of Electronic Medical Records Reliably Identifies Emergency Department Interventions in Older Adults

    Get PDF
    An estimated 14% to 25% of all scientific studies in peer-reviewed emergency medicine (EM) journals are medical records reviews. The majority of the chart reviews in these studies are performed manually, a process that is both time-consuming and error-prone. Computer-based text search engines have the potential to enhance chart reviews of electronic emergency department (ED) medical records. The authors compared the efficiency and accuracy of a computer-facilitated medical record review of ED clinical records of geriatric patients with a traditional manual review of the same data and describe the process by which this computer-facilitated review was completed. Clinical data from consecutive ED patients age 65 years or older were collected retrospectively by manual and computer-facilitated medical record review. The frequency of three significant ED interventions in older adults was determined using each method. Performance characteristics of each search method, including sensitivity and positive predictive value, were determined, and the overall sensitivities of the two search methods were compared using McNemar's test. For 665 patient visits, there were 49 (7.4%) Foley catheters placed, 36 (5.4%) sedative medications administered, and 15 (2.3%) patients who received positive pressure ventilation. The computer-facilitated review identified more of the targeted procedures (99 of 100, 99%), compared to manual review (74 of 100 procedures, 74%; p < 0.0001). A practical, non-resource-intensive, computer-facilitated free-text medical record review was completed and was more efficient and accurate than manually reviewing ED records

    A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    Get PDF
    Background: The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings: To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance: These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization
    corecore