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Abstract

In this paper we propose a dynamical model of technology adoption for the exploitation of a

renewable natural resource. Each technology has a different efficiency and environmental impact.

The process of technology adoption over time is modeled through an evolutionary game employed

by profit maximizing exploiters. The loss in profits due to lower efficiency levels of environmentally-

friendly technologies can be counterbalanced by the higher consumers’ propensity to pay for greener

goods. The dynamics of the resource take place in continuous time, whereas the technology choice

can be revised either in continuous-time or in discrete-time. In the latter case, the model assumes

the form of a hybrid system, whose dynamics is mainly explored numerically. We shows that: 1)

overexploitation of the resource arises whenever the reduction in harvesting due to a lower efficiency

of clean technology is more than compensated by a higher propensity to pay for greener goods; 2)

the difference between the fixed costs of these technologies can be exogenously fixed to provide an

incentive for adopting clean technology without affecting the long-run level of the resource; and 3)

in some cases, discrete switching of the technology causes overshooting in the dynamics whereas in

others it enhances the stability of the system.

Keywords: Resource dynamics, Stock externality, Evolutionary game theory, Hybrid systems.

1. Introduction

A main issue in the exploitation of common property resources is the so-called ”stock external-

ity”: individual exploiters do not take into account the effects of their current catch on the resource
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and on its future abundance. The non-coincidence between individual optima and collective optima

is commonly referred to as the ”tragedy of the commons”, after [21], and characterizes the exploita-

tion of almost all shared natural resources, see also [13] and [28]. Moreover, enforcing control on

the resource is a very difficult and often an ineffective task.

In this paper we address a descriptive model for the exploitation of a common pool renewable

resource, on which the regulator does not enforce any restraint. However, some exploiters can decide

to employ a less efficient but more ”environmentally-friendly” technology if the loss in efficiency is

counterbalanced by a higher price that consumers might be willing to pay for the greener product1.

The choice of the technology, which is an exogenous component of the model2, only depends on

the agents’ assessment on expected profits and not on ethical or environmental concerns, as agents

are assumed to be selfish profit maximizers. Exploiters have to make two choices over time: which

technology to adopt and, given that, the quantity to harvest. With respect to the problem of

technology adoption, we model it through an evolutionary game in the spirit of [24] and [34], as is

customary in natural resource exploitation models, see, among others, [32], [36], [1], [8], [9]. Thus,

agents can switch from the selected technology to another that is available if they expect that the

change can be profitable. Regarding the quantities to be harvested, we follow [32] and assume that

agents choose their catches continuously in order to be in a Nash equilibrium at any given time.

We first address the case in which the choice of the technology can be revised continuously. This

step constitutes a useful benchmark to understand the main qualitative properties of the model.

Then we break down this assumption to conceive a scenario that is more similar to what could

take place in a more realistic setting. In fact, changing technology immediately is not feasible in

practical cases for different reasons, the most obvious of which is due to the interval of time required

to conclude a single harvesting operation. Thus, it is natural to assume that only after a certain

time interval may a change in the employed technology take place. In this circumstance the system

can be modeled mathematically through a hybrid model, including continuous-time resource growth

and impulsive changes of strategies. The latter takes place at discrete points in time according to

an evolutionary endogenous switching mechanism. In recent years, hybrid dynamical systems have

1Empirical evidence has shown that the introduction of an eco-label can indeed change market behavior, see [33]
for the case study of the dolphin-safe labeling.

2For overviews about the existence and the importance of heterogeneity among economic agents with respect to
technology adoption, product activities and evolutionary paradigms for the diffusion of technologies, we refer the
reader to [14]. For an example of technological adoption processes in fisheries, see [15].
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been widely employed for studying real-world problems in several branches of applied mathematics,

such as engineering, biology and biomedical science (see e.g. [11], [12], [3], [18], [19], [20]). In fishery

models, hybrid systems have been recently proposed in [6] and [7].

The first goal of this paper is to gain an understanding of the influence of the length of the

switching interval on the dynamics of the natural resource and profits. In some cases, continuous

technology switching just speeds up the convergence to the same attractor of the hybrid system. In

others, discrete and continuous switchings exhibit different long-run behaviors. Interestingly, under

some circumstances discrete switching may even introduce a stabilizing effect in the model because

of more inertia in the system when switching decisions are based upon past profits. Another aim of

the paper is to assess whether an unregulated use of the resource can be sustained in the long-run.

Although this is true in some cases, we show some examples where every agent tends to use the

less-efficient technology but the level of the resource in the long run is lower than the level obtained

if every agent would have used the traditional technology. This occurs whenever the high price for

the green product induces too many exploiters to over-harvest it. In these cases, the market itself

is not able to mitigate the effects of the tragedy of the commons but additional regulatory policies

must be introduced. For instance, a regulator could avoid poverty traps by providing an incentive

for adopting a technology over the other. Analytic and numerical analysis show that the stability of

equilibria is quite sensible to the difference in the fixed costs between the two available technologies

but the level of harvesting is not affected by this difference. As a result, a regulator can employ the

difference in fixed costs to steer the system towards the preferred long-run level of the resource.

The problem of adopting a less efficient but more environmentally-friendly technology is mo-

tivated by some real-world cases occurring in fisheries outside exclusive economic zones. In this

respect, a well-known example regards the landing of yellowfin tuna and the marketing of ”dolphin

safe” labels3. Dolphins commonly swim together with tunas, but closer to the surface. Therefore

fishing boats spot dolphins more easily than tuna. Consequently, although dolphins are a non-target

species and have no commercial value, they have been largely captured as bycatch in tuna fisheries.

Netting dolphins with tunas has severely endangered the population of dolphins. This issue mo-

tivated the introduction in the late 20th century of the ”dolphin safe” labels in several countries

3 See the ’Dolphin Protection Consumer Information Act’ at http://dolphinsafe.gov/dolprot.pdf
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such as the U.S., the U.K. or New Zealand4 . The presence of bycatch-free labels created market

segmentation with different prices for labeled and non-labeled tuna cans. The model proposed in

this paper can be regarded as a stylized version of this problem, but with appropriate adjustments

it can be easily adapted to describe other real-world cases.

This paper is structured as follows. Section 2 introduces the bioeconomic model. Section 3

is devoted to the analysis of the model with evolutionary switching of harvesting technologies in

continuous-time and introduces a formulation of the model with continuous-time growth of the

resource and discrete switching of technologies. Section 4 proposes several numerical analysis com-

paring the (transient and long-run) dynamic properties for the two models, also briefly addressing

some policy measures to avoid poverty traps and stimulate the adoption of the environmentally-

friendly technology. Section 5 concludes.

2. Bioeconomic Model

As is customary in bioeconomic models, we assume that the target resource (e.g. yellowfin tuna)

follows a logistic differential equation subjected to harvesting5

·
z = z(α− βz)−H (z) (1)

where α is the intrinsic rate of growth, α/β is the natural carrying capacity and H (z) denotes the

instantaneous total harvest (or harvesting rate) by the N agents who own the common pool. Below

we detail the functional form of the total harvest H (z).

Two exogenous technologies are available for catching the target species6, which we label s

(”standard”) and c (”clean”) in the following. Technology s is more efficient but less environmentally

friendly than c. The different efficiencies are reflected in the different catchability coefficients qs

and qc with qs > qc. At any time period, the N harvesters can be split in two groups according to

the technology they use, with nc ”clean” agents and ns = N − nc ”standard” agents.

4For more details on this specific issue we refer to [33].
5Since no confusion arises, in this Section we write

·
z(t) =

·
z and z(t) = z to simplify the notation.

6 In particular, exogenous technologies can be related to different production practices. Even though the employed
equipment is the same for the two technologies, the difference between a bycatch-free production practice and a
standard one is the choice of the fishing site. In terms of costs, this difference reflects to the distance between
different sites and the amount of fuel required. In terms of production efficiency, the amount of harvested resources
for a unit of time decreases. All these effects are captured by parameters qi.
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Another standard assumption in similar models is that the catch of the target species can be

described by a Cobb-Douglas harvesting function with constant returns to scale7. Thus, a fisherman

employing technology i ∈ {s, c} will catch the quantity:

hi (z) =
√
qiEiz (2)

where Ei denotes his/her current harvesting effort. The total cost of fishing for a type i agent,

denoted by Ci, is proportional to the effort plus a fixed cost8 , i.e., Ci = ci + γEi. In terms of

harvested quantity, the total cost is

Ci(h (z)) = ci + γ
(h (z))2

qiz
, i ∈ {s, c} .

Notice that marginal cost for ”clean” harvesting is higher than for standard harvesting. Current

aggregate harvest H (z) = nchc (z) + nshs (z) is wholly supplied to the market. In the following

we denote by ai the (constant) price for a product obtained through technology i. Given the

interpretation of the model, below we always assume that ac > as, as consumers might be willing

to pay more for the product obtained through a more environmentally-friendly technology. The

assumption of a perfectly elastic demand for the resource is well justified whenever the resource is

a staple food for the consumer or several substitutes to the resource are traded on the market, see

more on this point [13].

Fishermen are myopic, in the sense that they will maximize their instantaneous profits but not

the discounted flows of future profits. However, it is possible that they revise the decision on a

chosen technology by considering its past performance, as detailed below. With respect to payoffs,

a representative fisherman employing technology i ∈ {s, c} maximizes the following profit at any

time period

πi (z) = pihi (z)− ci − γ
(hi (z))2

qiz
(3)

through the first order condition ∂πi
∂hi

= 0, which is also sufficient being ∂2πi
∂h2

i
= − 2γ

qiz
< 0.

Thus, employing symmetry among all players with the same technology, the Nash Equilibrium

7The use of harvesting functions with constant returns to scale is common in resource economics, see [13] for a
detailed discussion on the topic. Other forms of harvesting functions are also employed, see e.g. [30].

8The difference in fixed costs between the two harvesting strategies can be related either to additional costs for
the labeling of the environmentally-friendly product if cc > cs or to tax relief if cc < cs. Given this interpretation,
to some extent the difference in fixed costs could be regarded as a possible policy measure to the fishing authority.
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harvesting strategy for a type i agent reads

hNEi (z) =
aiqiz

2γ
; i ∈ {s, c} (4)

with hNEi (z) ≥ 0 whenever z ≥ 0.

Profits 3 at the Nash equilibrium 4 are nonnegative for sufficiently low fixed costs ci, being

π∗i (z) =
a2i qiz

4γ − ci.

3. Technology choice and replicator dynamics

3.1. Instantaneous Switching

In this section, we explicitly formulate a dynamic mechanism for agents’ switching between

two available technologies. Agents tend to switch from one strategy to another if they expect this

change to be profitable for them, according to the paradigms of evolutionary game theory. In

general, a switching cost should be included in the model. However, for the specific problem under

consideration here, we do not include such costs9. The opportune changes in the model to include

switching costs are outlined in Appendix A.

We firstly developed the model with continuous-time switching, then we relax the assumption

that agents are able to change their technology continuously and we introduce a time interval after

which agents can switch to the other technology.

In the case of agents revising their strategy (i.e. the employed technology) continuously and

instantaneously, we follow [32] and assume that agents harvest the Nash equilibrium quantity (4)

at any given time period. The corresponding profits (3) evaluated at the Nash equilibrium, denoted

by π∗i (z(t)), i ∈ {s, c}, are taken as fitness measures for the adoption of each technology. Among

the possible evolutionary dynamics, we focus on the most common one, namely the replicator

in continuous-time (see [34] and [24]). Let us denote by r(t) = ns
N the fraction of agents using

”standard” technology (and 1−r(t) the complementary fraction of agents using ”clean” technology).

9Take, for instance, the case in which the environmentally-friendly technology consists in bycatch-free harvesting.
Then the main difference between this kind of harvesting and a traditional one relies only on the employed searching
methods for tuna, which do not require additional equipment. Whereas a traditional technology targets directly
to dolphins for spotting tuna (’dolphin set’ technology), the bycatch-free technology targets either schools of tuna
(’school set’ technology) or floating debris (’log set’ technology). For all of these three searching technologies, the
same equipment is required, i.e. crew with binoculars, speedboats, and helicopters that are launched off the purse
seiner, see [23]. It follows that exploiters can decide to change the searching method in use at each fishing operation
without additional costs.

6



The replicator equation is one possible way to model that from π∗s (z(t)) > π∗c (z(t)) it follows that
·
r (t) > 0 and vice versa. Mathematically, the dynamical system with resource and replicator

dynamics is given by the following system of ODEs
·
z (t) = z(t)(α− βz(t))−N(r(t)hNEs (z(t)) + (1− r(t))hNEc (z(t)))
·
r (t) = r(t)(1− r(t)) [π∗s (z(t))− π∗c (z(t))]

(5)

3.2. Equilibria and stability

Here we analyze the steady states and their stability properties for the continuous-time replicator

dynamics (5). The system of ODEs (5) can be rewritten as


·
z (t) = z(t)(α− βz(t))−N

[
r(t)asqs2γ z(t) + (1− r(t))acqc2γ z(t)

]
·
r (t) = r(t)(1− r(t))

[
a2sqs−a

2
cqc

4γ z(t) + ξ
] (6)

where ξ = cc − cs. In the proposition below we denote by ξ̂ =
(a2cqc−a

2
sqs)(2αγ−Nacqc)

8βγ2 , and ξ =
(a2cqc−a

2
sqs)(2αγ−Nasqs)

8βγ2 .

Proposition 1 (Equilibria and stability). The ODEs model (6) admits the following equi-

libria in the phase space (z, r):

• Equilibria with extinction of the resource:

E0,0= (0, 0) and E0,1= (0, 1)

with E0,0 always unstable(saddle or node) for ξ > 0 and either stable if acqc >
2γα
N or unstable

(saddle) if acqc <
2γα
N for ξ < 0 and E0,1 always unstable (saddle or node) for ξ < 0 and

either stable if asqs >
2γα
N or unstable if asqs <

2γα
N for ξ > 0.

• Boundary equilibria, each of which involving the employment of only one harvesting technol-

ogy:

Êẑ,0 = (ẑ, 0) =

(
α

β
− Nacqc

2βγ
, 0

)
and Ez,1 = (z, 1) =

(
α

β
− Nasqs

2βγ
, 1

)
(7)

Moreover:

– Êẑ,0 is feasible (i.e. with positive biomass) iff acqc <
2αγ
N , i.e. iff E0,0 is unstable along

the r axis.

– Ez,1 is feasible iff asqs <
2αγ
N , i.e. if E0,1 is unstable along the invariant line r = 1.
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– Êẑ,0 and Ez,1 are both feasible if 2αγ
N > max {acqc, asqs} .

– With respect to the stability

∗ Êẑ,0 is a stable node for ξ < ξ̂ or a saddle for ξ > ξ̂;

∗ Ez,1 is a stable node for ξ > ξ or a saddle for ξ < ξ.

• A unique equilibrium that involves the employment of both technologies:

E∗ = (z
∗
,r∗)=

 4ξγ

a2
cqc − a2

sqs
,
acqcN − 2αγ + 8ξβγ2

a2cqc−a2sqs
N(acqc − asqs)



Moreover:

– if acqc ≥ asqs or if acqc < asqs with a2
cqc < a2

sqs then E∗ is feasible, i.e. z∗ > 0 and

0 < r∗ < 1, provided that

ξ̂ < ξ < ξ (8)

In this case E∗ is always a stable point (either spiral or node).

– if acqc < asqs with a2
cqc > a2

sqs, then E∗ is feasible provided that

ξ < ξ < ξ̂

In this case E∗ is always a saddle point .

– at ξ = ξ̂ it is r∗ = 0 and E∗ = Êẑ,0, whereas at ξ = ξ it is r∗ = 1 and E∗ = Ez,1.

Proof. See Appendix B.

From this theorem it is possible to derive some preliminary bioeconomic policy implications that

will be analyzed in more detail in the next section. First of all, it is worth noting that when there

is a reduction in harvesting due to the lower efficiency of clean technology qc that is more than

compensated by the propensity to pay for a greener product ac, i.e. when hNEc (z) > hNEs (z) or

equivalently when ac >
asqs
qc

, the border equilibria Êẑ,0 and Ez,1 are such that ẑ < z. In this case,

even if agents endogenously select the equilibrium Êẑ,0 in which only clean technology is used, the
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resource will be overexploited in the long-run. This problem can be overcome by controlling the

propensity to pay for greener product, i.e. imposing that ac <
asqs
qc

. Another interesting aspect of

the theorem regards the role played on the stability of the equilibria by the difference in the fixed

costs of the two technologies ξ = cc − cs. Let us consider for example the situation in which the

two border equilibria Êẑ,0 and Ez,1 are both feasible and stable, so that ξ < ξ < ξ̂. By subsidizing

clean technology or taxing traditional technology, it is possible to reduce the difference in the fixed

costs between the two technologies so that ξ < ξ < ξ̂. As a result, the two border equilibria do not

change their position in the state space but the equilibrium Ez,1 becomes unstable and Êẑ,0 is the

only stable equilibrium. In other terms, clean technology prevails without reducing the stock size

of the target resource.

In respect to the inner equilibrium E∗, Proposition 1 states that an equilibrium in which both

technologies are used can exist only if the difference in the fixed costs of the two technologies ξ is

sufficiently low. Provided that this happens, such an equilibrium is stable in the following cases:

(i) when an individual catch with clean technology is not lower than the corresponding intake

with standard technology (i.e. whenever acqc ≥ asqs) or when (ii) individual profits without fixed

costs associated to ”environmentally-friendly” technology are lower than the corresponding profits

obtained with the standard technology (a2
cqc < a2

sqs). On the other hand, if any agent employing

technology c harvests less than any agent using technology s (i.e. acqc < asqs), then an inner

equilibrium is feasible if the profits (without fixed costs) to the first agent are higher than the

profits to the second (a2
cqc > a2

sqs). However, such an equilibrium is always a saddle point for the

evolutionary dynamics of the system. Finally, note that the inner equilibrium E∗ cannot be stable

when the border equilibria Êẑ,0 and Ez,1 are stable and vice versa.

For the various stability conditions of the border equilibria a clear economic interpretation can

be given. For example, the local stability condition for Êẑ,0, i.e., ξ < ξ̂, can be rewritten as

π∗c (ẑ) > π∗s (ẑ), which has a straightforward meaning: the equilibrium in which all the fishermen

use the environmentally-friendly technology is stable if this technology outperforms the alternative

strategy in a neighborhood of the equilibrium. Similar and opposite considerations hold true for

the equilibrium Ez,1.

3.3. Discrete-time Switching

Up to now, we have considered the evolutionary game in which agents decide instantaneously

and continuously on which technology to adopt. In practice, it would be very difficult for the
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exploiters to realize such an instantaneous switching, for the reasons outlined in the introduction.

In this section we formulate the model assuming that a minimum time interval ∆l exists after which

switching may take place. The time interval ∆l can be interpreted as the time of a single fishing

operation10. For the sake of simplicity, we assume that the single fishing operation takes the same

amount of time for both technologies.

Thus, at the end of each time period of length ∆l, a representative agent employing technology

i ∈ {s, c} measures π∗i (z(t)), the net performance of his/her current harvesting strategy, as the

exponentially decaying weighted average of historical profits over a time interval [t−∆t, t], i.e.

π∗i (z(t)) =
δ

1− e−δ∆t
t∫

t−∆t

e−δ(t−τ)πNEi (z(τ)) dτ ; i ∈ {s, c} (9)

where time delay ∆t ∈ (0,∞) represents the profit history used to calculate the average past profits

of the two harvesting strategies, and δ > 0 is a decay rate, assumed equal to all agents (see [22] for

the same form of trend dynamics in an asset model). To make things easier, in this paper, we just

consider the case ∆t = ∆l and we do not make distinction between the two11.

The magnitude of π∗i (z(t)) is a fitness measure of playing strategy i (see [34]). Again letting

r(t) = ns
N , the replicator dynamics can be expressed by a continuous-time growth equation for the

biomass and a discrete (or pulse) strategy switching (a discrete decision-driven time). Under a

synchronous updating of technologies (see [26]) the model can be written as
·
z (t) = z(t) (α− βz(t))−N

(
r(t)hNEs (z(t)) + (1− r(t))hNEc (z(t))

)
r(t) =

 r(t−∆l) eθπ
∗
s (z(t))

r(t−∆l)eθπ
∗
s (z(t))+(1−r(t−∆l))eθπ

∗
c (z(t))

if t
∆l =

⌊
t

∆l

⌋
r
(⌊

t
∆l

⌋
∆l
)

otherwise

(10)

where bxc is the largest integer not greater than x (i.e. the floor of x), and hNEi (z(t)), π∗i (z(t)),

i = 1, 2 are given, respectively, in (4) and (9).

The dynamical model in (10) is a hybrid system, because it combines the population growth

model (1), which takes place in continuous-time, with a difference equation for the fraction of

agents employing the two technologies. The two dynamics have different time scales and their

10For example, in the case of midwater trawl fishing technique, usually employed in tuna harvesting, ∆l can be
interpreted as the amount of elapsed time from the moment of plunging the nets into the water until the fish is
downloaded on the dock.

11Numerical simulations not reported here show that the dynamics of the model do not change substantially for
∆t ≈ ∆l.
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modeling is best obtained through a hybrid model. Notice that the second equation in (10) is a

standard replicator dynamic in discrete time. The monotone transformation π∗i (z(t)) → eθπ
∗
i (z(t))

is employed for obtaining fitness measures with strictly positive values (see [34] and [25] for details).

The parameter θ ∈ [0,+∞), known as the intensity of choice, can be interpreted as a switching

propensity.

4. Numerical Analysis and Bioeconomic implications

In this section we investigate some dynamic properties of the hybrid model (10) considering

system (6) as a benchmark. Through these examples, we also underline the principal bioeconomic

implications related in the use of clean technology. Before beginning the Section, we would like to

remark that all the equilibria of model (6) are also equilibria of model (10), although the contrary

is not necessarily true. Furthermore, the stability properties of equilibria can be different in the two

versions of the model, namely with switching in continuous or discrete time, as highlighted below

in the numerical simulations. In all the following examples we set an interval of length ∆l = 1,

which can be regarded as the duration of a single harvesting operation, and a decay rate δ = 0.01

in 9.

According to Proposition 1, the two border equilibria Êẑ,0 and Ez,1 are both feasible and stable

for 2αγ
N > max {acqc, asqs} and ξ < ξ < ξ̂. Such a case is depicted in Figure (1), Panel (a). In

particular, Panel (a) of Figure (1) shows a phase portrait in the plane (z, r) for the continuous-time

replicator model (6) with parameters: α = 19, β = 0.15, as = 1, ac = 1.45, cs = 0.4, cc = 3,

N = 10, qs = 1.8, qc = 1, γ = 0.5. Under these parameters, in addition to the equilibria Êẑ,0 and

Ez,1, model (6) admits two saddle equilibria E0,1 and E∗ and the unstable node E0,0 .

Considering the system as in Figure (1), Panel (a) characterized by the two stable border

equilibria Êẑ,0 and Ez̃,1, Figures (2) and (3) show the different trajectories between the continuous

system (6) and the hybrid counterpart (10) for a different initial condition (i.c.). In details, with i.c.

(17, 0.58), Figure (2) shows a trajectory converging to the border equilibrium Ez,1, whereas with i.c.

(17, 0.54), a trajectory converging to the stable node Êẑ,0 is plotted in Figure (3). In this example,

the model with a continuous replicator and the one with a discrete replicator have qualitatively

the same long-run dynamics, i.e. the same attractors with the same stability properties. The

main difference between them concerns the different transitory dynamics toward the two stable

equilibria Êẑ,0 and Ez,1, as clearly visible in the versus-time dynamics of Figures (2) and (3). In
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Figure 1: State spaces of the dynamical system (6). Panel (a):α = 19, β = 0.15, as = 1, ac = 1.45, cs = 0.4, cc = 3,
N = 10, qs = 1.8, qc = 1, γ = 0.5; Panel (b): as in Panel (a) but ac = 1.65; Panel (c) as in Panel (a) but ac = 2.
Black squares, circles and ovals represent, respectively, saddle points, stable nodes and unstable nodes. Dashed lines

are the isoclines
·
z = 0 (gray) and

·
r = 0 (black). The black lines represent stable and unstable manifolds of the

saddle points. The arrows indicate the direction of the flow of the dynamical system along the manifolds.
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the latter figures, the chosen initial conditions are close to the unstable manifold of the saddle E∗,

separating the two basins of attraction of equilibria Êẑ,0 and Ez,1 for the model with a continuous

replicator. In general, this border of the two basins can be very different in the two versions of the

model (continuous and discrete replicator), although in this specific example of Figures (2) and (3),

numerical simulations not reported here confirm that the basins of attraction are similar for the

two models.

As mentioned above, in this example the transitory dynamics of the two models is quite different.

From Figure (2), Panels (b), (d) and (e), it is possible to notice that the hybrid model ensures

higher levels of biomass, harvesting and profits along the entire trajectory converging to the border

equilibrium Ez,1 than the corresponding values in the continuous-time case. This seems to be

counter-intuitive for profit-driven fishermen: intuitively, the faster they are able to adjust their

profits toward the most performing strategy, the better their total profits should be. However, in

this example along the entire trajectory it is
·
r ≥ 0 (the fraction of agents employing technology s

increases over time) with fishermen moving towards an equilibrium with lower biomass (see Figure

(2), Panel (b)). This is due to the fact that fishermen are attracted to strategy s since it dominates

strategy c in all instances; but being myopic, fishermen do not consider the effect of their current

harvesting on the future level of the resource (the ”stock externality”). As a consequence, they

tend to over-harvest by employing strategy s and thus they end up with a profit that is lower than

the one they could have obtained by always applying strategy c. More specifically, if the initial

condition is in the basin of attraction of the equilibrium Ez,1, then agents are ”locked-in” in a

prisoners’ dilemma trap, where strategy s always dominates strategy c so that the strategy being

played in the long run is s. This is clearly visible in Figure (2), Panel (e), where πs (t) (dashed-lines)

is greater than or equal to πc (t) (continuous-lines) along the entire trajectories, thus explaining
·
r ≥ 0. At the same time, both πs (t) and πc (t) decrease along the trajectory due to overfishing

that depletes the biomass levels. Overall, myopic fishermen are faced with degenerating conditions.

In this case, the equilibrium Êẑ,0 would ensure a higher economic welfare, as visible in Figure (3),

Panel (e). Examples of similar poverty traps in related models are provided in [2], [10] and [5].

If otherwise, the initial condition is in the basin of attraction of the equilibrium Êẑ,0, profit-

driven agents move towards profits improvements. In fact, profits, harvesting and resource stock

all increase along the trajectory until they reach the equilibrium Êẑ,0, where all agents employ the

environmentally-friendly technology c. In this example, the replicator in continuous-time offers a
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Figure 2: Dynamics of the model with continuous switchings (6) (black lines) and discrete switchings (10) (gray lines)
with parameter values as in Fig. (1), Panel (a), and with δ = 0.01, θ = 0.5 and i.c. (17, 0.58). Panel (a) trajectories
on the state space (z, r); the gray and black dots represent the state of the hybrid and non-hybrid model respectively
at time tend. Panel (b) versus-time dynamics of biomass. Panel (c) versus-time dynamics of the fractions of agents
using strategy s. Panel (d) enlargement of the dynamics in panel (a). Panel (e) versus-time dynamics of harvesting:
dashed lines for strategy s, solid lines for strategy c. Panel (f) versus-time dynamics of profits: dashed lines for
strategy s, solid lines for strategy c.

better economic performance along the transient trajectory than that in discrete-time. This is due

to the fact that it moves faster to the equilibrium Êẑ,0. From the point of view of a regulator12

trying to maximize the total industry profits over time, it is possible to show that in the examples

of Figures (2) and (3) the singular state obtained through (C.6) is not accessible and the optimal

control (C.5) consists precisely in setting r = 0 thus reaching the fixed point Êẑ,0. This case occurs

whenever the initial condition is taken in the basin of attraction of the equilibrium Êẑ,0.

In all the examples so far discussed, the steady state Êẑ,0 in which all agents adopt clean

technology is better than the steady state Ez,1 from an economic as well as ecological point of

view. In these cases, a good environmental and economic policy would be to avoid converging to

the ”sub-optimal” equilibrium Ez,1.

12We assume that the regulator’s discount rate δ in C.1 is equal to the decay rate in 9
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Figure 3: As Fig. (2) but with i.c. (17, 0.54).

As highlighted in the example of Figure (1), a higher propensity to pay for the product obtained

through ”clean” technology (e.g., the environmentally-friendly or the bycatch-free product, accord-

ing to the interpretation given to the model), i.e., a higher ac, could guarantee that a poverty

trap equilibrium such as Ez,1 is unstable, compare Panel (a) (where ac = 1.45) with Panel (b)

(where ac = 1.65) of Figure (1). Therefore, to stimulate the adoption of ”clean” technology, a

possible solution would be to make consumers more willing to pay for the ”clean” product 13.

This can be achieved in several ways, for instance through eco-labeling, tax reliefs or awareness-

raising campaigns on environmental issues. However, if the propensity to pay for the ”clean”

product ac becomes too high, then other undesired effects could arise. In fact, the equilibrium

Eẑ,0 =
(
α
β −

Nacqc
2βγ , 0

)
has a contact with the border equilibrium E0,0 at ac = αβγ

Nqc
and it dis-

appears from the positive orthant through a transcritical bifurcation for higher values of ac. This

situation is depicted in Figure (1), Panel (c), where the only stable equilibrium is the inner fixed

point E∗. At this equilibrium, less than half of the exploiters employ the environmentally-friendly

13The dynamics of the hybrid model and the continuous one are similar for the case of Figure (1), Panel (b), and
the dynamics of the hybrid model are not so sensitive to the value of the intensity of choice parameter θ. Hence, for
the sake of saving space the related simulations are omitted.
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technology and the level of the natural resource stock is relatively low; it is useful to compare the

level of the resource stock for the stable equilibria in Figure (1), Panel (a) and Panel (b) with the

one in Panel (c). This numerical example highlights a critical aspect of controlling the propensity to

pay for the environmentally-friendly product as a possible tool to increase sustainability. This can

be better understood by observing the dynamics of the profits and the harvests. Figure (4) shows

the trajectories of the continuous-time and hybrid models for parameters as in Figure (1), Panel

(c) and i.c. (6, 0.9). Under this parameter setting, it is hNEc (z(t)) > hNEs (z(t)), i.e., any agent

adopting strategy c catches more than any agent adopting strategy s. This is due to the higher

reservation price consumers have for buying an ”environmentally-friendly” product. Thus, as the

number of agents using the ”environmentally-friendly” technology increases, the total biomass de-

creases. At a certain point, due to a reduction in the level of the stock and to the higher fixed

cost of strategy c, agents find it more profitable to choose standard technology s and switch to

it. As a result,
·
r becomes positive and the level of biomass starts increasing, till the point in

which the environmentally-friendly strategy becomes more profitable again. In this example, the

”environmentally-friendly” strategy c is more profitable (and so
·
r < 0) as long as the level of

biomass is sufficiently high. This process explains intuitively the oscillatory convergence to the in-

ner equilibrium E∗. Moreover, if consumers are too keen to pay for the product obtained with the

”environmentally-friendly” technology and fishermen are myopic, deciding to harvest ”Nash” quan-

tities and to select the harvesting technology according to past observed profits, then the fishery

may be characterized by overexploitation. In this case, agents would be better off using standard

technology s. In fact, by (C.5) and (C.6), a regulator would impose the control r = 1 from the

beginning to maximize total revenues over time. Of course this consideration does not take into

account other reasons for employing clean technology, such as bycatch reduction or pollution issues,

but only considers the net economic benefit for fishermen. Explicit tracking of other environmental

variables could be addressed in future extensions of this paper.

For that which concerns the similarities and differences between the hybrid and the continuous-

time models, Figure (4) shows that the hybrid model with a low intensity of choice (here it is θ = 0.5)

yields a transient dynamic that is very similar to the one in continuous-time. Both models converge

to the stable inner equilibrium E∗ and all the previous considerations are still valid for the hybrid

model. However, differently from the case of Figure (1), Panels (a) and (b), in the example of Figure

(1), Panel (c), the dynamics of the hybrid model are quite sensitive to changes of the parameter θ.
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For small values of θ (such as θ = 0.05), the inner equilibrium is still the only stable attractor for

the hybrid model and we observe non-oscillatory convergence to it, see Figure (5). On the contrary,

if θ is high enough, the inner equilibrium E∗ becomes unstable and the generic trajectory converges

to a chaotic attractor. Further increasing the intensity of choice θ, an attractor surrounding the

unstable inner equilibrium E∗ coexists with the stable border equilibrium Ez,1, see Figures (6)

and (7) where θ = 5. Figure (6) displays a trajectory converging to the stable non-equilibrium

attractor for i.c. (6, 0.5). Figure (7) exhibits a trajectory converging to the border equilibrium Ez,1

for i.c. (6, 0.9). For a sufficiently high intensity of choice θ, the border equilibrium Ez,1 becomes

the only stable attractor for the hybrid dynamical system (simulations are not reported here for

saving space).

As recalled above, under these parameter values, the equilibrium Ez,1 represents the optimal

state for maximizing the total industry profits given the harvesting functions (4). Thus, for suf-

ficiently high intensities of choice, myopic profit-driven fishermen can indeed reach this ”optimal”

equilibrium, after an irregular transient period (see again Figure (7)). On the contrary, if agents’

intensity of choice is too low, the hybrid model will reach a sub-optimal outcome, converging either

to the inner equilibrium E∗ or to a chaotic attractor.

In addition to the propensity to pay for the ”clean” product, another parameter that can be

easily controlled by a regulator is the difference between the fixed costs of the production of the

two types of technologies, for instance through a fixed tax for operating with a specific technology.

Below, we briefly analyze the effects of this difference on the dynamics of a model. Starting from

the situation depicted in Figure (1), Panel (a), the fixed cost associated to clean technology cc is

decreased (obviously the same can be obtained by increasing the cost of standard technology cs), see

Figure (8), Panel (b). The border equilibrium Êẑ,0 does not change coordinates but it becomes the

only stable equilibrium of the system so that in the end all the agents adopt the environmentally-

friendly technology, see Figure (8), Panel (c). If cc is increased instead of decreased, the results is

that the equilibrium Êẑ,0 becomes unstable and equilibrium Ez,1 is the only stable one, see Figure

(8), Panel (a). This example is a simple application of Proposition 1, and shows how fixed costs

can be employed to guarantee the convergence for the desired equilibrium in the continuous-time

model. Clearly, the difference between the fixed costs make it so that the cheapest technology is

more appealing than the other without affecting the levels of harvesting, see equations (4).

From a ”bioeconomic” point of view, these numerical examples underline two main aspects.
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Figure 4: Dynamics of the model with continuous switchings (6) (black lines) and discrete switchings (10) (gray
lines) with parameter values as in Fig. (1), Panel (b), and with δ = 0.01, θ = 0.5 and i.c. (6, 0.9). Panels follow the
setup of Fig. (2).
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Figure 5: Dynamics of the model with continuous switchings (6) (black lines) and discrete switchings (10) (gray
lines) with parameter values and i.c. as in Fig. (4). but θ = 0.05. Order of panels as in Fig. (2).
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Figure 6: Dynamics of the model with continuous switchings (6) (black lines) and discrete switchings (10) (gray
lines) with parameter values as in Fig. (4) but θ = 5 and i.c. (6, 0.9). Order of panels as in Fig. (2).
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Figure 7: Dynamics of the model with continuous switchings (6) (black lines) and discrete switchings (10) (gray
lines) with parameter values as in Fig. (6). but θ = 5 and i.c. (6, 0.93). Order of panels as in Fig. (2).
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Figure 8: State spaces of the dynamical system (6). Panel (a):α = 19, β = 0.15, as = 1, ac = 1.45, cs = 0.4, cc = 6,
N = 10, qs = 1.8, qc = 1, γ = 0.5; Panel (b): as in Panel (a) but cc = 3; Panel (c) as in Panel (a) but cc = 1. Black
squares, circles and ovals represent, respectively, saddle points, stable nodes and unstable nodes. Dashed lines are

the isoclines
·
z = 0 (gray) and

·
r = 0 (black). The black lines represent stable and unstable manifolds of the saddle

points. The arrows indicate the direction of the flow of the dynamical system along the manifolds.

First, the gap between the efficiencies of the two technologies can lead to a resource overexploitation

whenever this gap is more than compensated by the higher consumers’ reservation price for an

”environmentally-friendly” product. Second, lowering fixed costs for clean technology increases the

fraction of agents selecting it without directly affecting the level of harvesting. Thus, fixed costs

could be employed as a control variable to stimulate the adoption of clean technology.

Up to now, all the simulations presented refer to case ξ = cc−cs > 0, i.e. where clean technology

is characterized by higher fixed costs. In the opposite situation, i.e. for ξ = cc − cs < 0, similar

dynamics are obtained as indicated in Figure (9), in which three typical phase portraits of the

model in continuous-time (6) are depicted for parameters: α = 26, β = 5, as = 1, ac = 2, cs = 1,

cc = 0.4 (Panel (a)), 0.5 (Panel(b)) and 0.6 (Panel(c)), N = 10, qs = 1, qc = 0.185, γ = 0.5.

Panel (a) shows a phase portrait with three saddle points E0,0, Êẑ,0, and E0,1 and the stable focus
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Figure 9: Phase portraits of the dynamical system (6). Panel (a) α = 26, β = 5, as = 1, ac = 2, cs = 1, cc = 0.5,
N = 10, qs = 1, qc = 0.185, γ = 0.5; Panel (b) as in Panel (a) but cc = 0.4; Panel (c) as in Panel (a) but cc = 0.6.
Black squares, circles and ovals represent, respectively, saddle points, stable nodes and unstable nodes. Dashed lines

are the isoclines
·
z = 0 (gray) and

·
r = 0 (black). The black closed curve is an invariant orbit of the dynamical system

and the black lines represent stable and unstable manifolds of the saddle points. The arrows indicate the direction
of the flow of the dynamical system along the manifolds.

E∗. Under these parameters, an optimal control of the system (C.5) is achieved by fixing r = 0.

By decreasing the fixed cost of clean technology, it can indeed ensure that Êẑ,0 is the only stable

equilibrium under the evolutionary selection process, see Figure (9), Panel (b). On the contrary, if

the fixed cost of clean technology is too high, the ”sub-optimal” equilibrium Ez,1 becomes the only

stable one. Again, the difference in fixed costs is a key tool for driving the evolutionary process

through the desired equilibrium.

In respect to the dynamics of the hybrid model with parameters as in Figure (9), Panel (b),

no particular differences are present with the continuous-time model whenever the values of the

intensity of choice are sufficiently small. In this case, differences can be observed only in the

transient trajectories and so we do not report them here. On the contrary, when fishermen have a

high propensity to switch between strategies according to their past-profit performances, the inner
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Figure 10: Dynamics of the model with continuous switchings (6) (black lines) and discrete switchings (10) (gray
lines) with parameter values as in Fig. (9), Panel (a), and with θ = 80 and i.c. (4, 0.5). Order of panels as in Fig.
(2).

equilibrium becomes unstable for the hybrid model and a cyclic attractor appears around it. Figure

(10) represents such a case with θ = 80. Comparing Panels (b), (c), (d) and (e) in Figure (10), one

can easily observe that the harvesting strategy s provides a better performance when the level of

fish biomass is relatively high. In fact, around the inner equilibrium the level of biomass is high

enough to make strategy s more profitable than strategy c. Given the relatively high intensity

of choice, fishermen are sensitive to small differences of profits and most of them decide to adopt

strategy s. This reduces the level of biomass due to higher harvesting implied by strategy s in this

specific case. With reduced harvesting, strategy c procures a better economic performance due to

its lower fixed costs (recall that here it is ξ = cc− cs < 0). Fishermen react to this change and start

to adopt strategy c. In this case, a short period with a high fraction of agents using technology c

helps to increase the level of biomass. As a consequence, strategy s becomes more profitable again

and cyclic dynamics persist in the long run. This example suggests that the presence of fishermen

who are sensible to past performances could in some cases destabilize the dynamics.

In numerical simulation not reported here, the hybrid model exhibits similar dynamics to the
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continuous-time model for parameters as in Figure (9), Panels (a) and (c).

The numerical simulations discussed in this section point out two important aspects. First

of all, the continuous-time model 6 and the hybrid model 10 show similar dynamics when the

intensity of choice θ is low. On the contrary, when θ assumes larger values, overshooting can take

place. Although all the simulations are made for a specific value of ∆l and δ, a large number of

numerical tests confirms that this holds true for a wide range of these parameters. The second

important aspect concerns the bioeconomic implications of adopting ”clean” technology. A high

propensity to pay for the clean product increases the fraction of exploiters adopting it. However,

if this propensity is too high, then it compensates for the reduction in harvesting due to the lower

efficiency of clean technology and problems of overexploitation of the resource might arise. Last

but not least, controlling the fixed costs of the two technologies could ensure the convergence to

the desired equilibrium in the evolutionary system thus reducing the risks of overexploitation of the

resource, as pointed out by several examples in this section.

5. Conclusions

In this paper we have studied a dynamical model of technology adoption for the exploitation

of a renewable resource. Technology adoption is modeled through an evolutionary game, where

agents can change strategies (i.e. the employed technology) continuously or at specified times. In

the latter case the mathematical description of the system gives rise to a hybrid model. Similarities

and differences between the two possible dynamical systems are outlined in this paper, mainly

through numerical simulations. Continuous switching in general amplifies the final outcomes of the

system in both negative and positive cases. Despite the fact that discrete-time replicator models

are known to generate more complicated behaviors than those of a continuous-time (see, e.g. [35]),

we showed several examples in which discrete switching may have a stabilizing effect: in fact, a form

of inertia is introduced in the system when agents assess the fitness of each strategy according to

the moving average of past profits over an interval of time. Overall, with continuous-time switching

or with discrete-time switching and low switching propensity, the system is likely to be trapped in

basins of non-optimal attractors. This occurs when other attractors of the system could guarantee

more profits in the long-run. This comparison can be established by solving an intertemporal profit

maximization problem with the same harvesting functions employed by the myopic agents. The

numerical results suggest that the inner equilibrium of the hybrid model is destabilized whenever the

23



corresponding inner equilibrium of the continuous model has complex conjugate eigenvalues with

negative real part or for high enough values of the intensity of choice. Hence, when the equilibrium

in the continuous model is a stable focus, the value of the intensity of choice in the hybrid model

is likely to play a crucial role in the long-run dynamics of the system.

The results confirm pretty intuitive and common sense concepts in natural resource modeling as

well as some aspects of the problem that are less intuitive. In most cases higher immediate profits

entail less welfare in the long run, because of ”resource externalities”. A high willingness to pay

for the ”greener” product can indeed lead to over-harvesting and resource depletion, although the

use of environmentally-friendly technology is prevalent. Our examples suggest that one does not

only have to harvest differently, but also to harvest less. The market is not able to self-regulate

in these delicate issues and, due to path dependence of the system, it is likely to be ”locked-in” in

sub-optimal outcomes. Bycatch-free labels could be an important example to follow, but it is also

necessary to reduce total catches (at least in the short-run), to establish no-take zones (on this point

see [17], [27] and [5]) and to integrate the control of exploitation activities with the dynamics of the

whole ecosystem (reduction of bycatch and pollution). One possible extension of the model is to

explicitly consider the bycatch dynamics and to study the condition for the sustainable exploitation

of the target and non-target species under different assumptions on their relationship (predator-

prey, symbiotic interaction or negative interaction). In addition, it would be interesting to study

the evolutionary model with switching costs, as indicated in Appendix A.
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Appendix A.

Assuming the presence of switching costs, let us say c1 for switching from technology c to s and

c2 for switching from technology s to c, the dynamical system (5) takes the form:

·
z (t) = z(t)(α− βz(t))−N(r(t)hNEs (z(t)) + (1− r(t))hNEc (z(t)))

·
r (t) = r(t)(1− r(t))



[π∗s (z(t))− π∗c (z(t))− c1] iff π∗s (z(t))− π∗c (z(t)) ≥ c1,

0 iff − c2 < π∗s (z(t))− π∗c (z(t)) < c1

[π∗s (z(t))− π∗c (z(t)) + c2] iff π∗s (z(t))− π∗c (z(t)) ≤ −c2

(A.1)

see, e.g., [31]. Model A.1 is a piecewise differentiable (or piecewise smooth) dynamical system in

continuous time, so that its dynamic properties can be different from the one of model (5). For a

general treatment of piecewise smooth dynamical systems see, e.g., [16] and [29], for an example of

their application to economics, see, e.g., [4].

Appendix B. Proof of Proposition 1

Computing the Jacobian matrix of the ODEs system (6) we get

J(z, r) =

 −Nacqc(1−r)−Nasqsr+2(α−2zβ)γ
2γ

(acqc−asqs)zN
2γ

− (a2cqc−a
2
sqs)(1−r)r
4γ

(−1+2r)(a2cqcz−a
2
sqsz−4ξγ)

4γ


In the equilibrium (0, 0) it is

J(0, 0) =

 α− Nacqc
2γ 0

0 ξ


so that, apart from the eigenvalue ξ, (0, 0) is unstable with eigenvalue α − Nacqc

2γ > 0 ⇔ acqc <

2γα
N ⇔ Êẑ,0 > 0.

For the stability in Êẑ,0 =
(

2αγ−Nacqc
2βγ , 0

)
, it is

J(Êẑ,0) =

 −α+ Nacqc
2γ −N(acqc−asqs)(Nacqc−2αγ)

4βγ2

0
(Nacqc−2αγ)(a2cqc−a

2
sqs)

8βγ2 + ξ


and condition Êẑ,0 > 0 ⇔ −α + Nacqc

2γ < 0. Thus, Êẑ,0 > 0 is stable also along the second

eigendirection if ξ < ξ̂. If the reverse inequality holds then Êẑ,0 is a saddle. The stability in (0, 1)
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and in Ez,1 is studied analogously. Notice that if ξ < 0 then Êẑ,0 and Ez,1 cannot be stable at the

same time. On the contrary, if ξ > 0 then Êẑ,0 and Ez,1 can be stable at the same time. This case

occurs if Êẑ,0 and Ez,1 are both stable, i.e. ξ < ξ < ξ̂.

Now we consider the inner equilibrium E∗ = (z∗, r∗)

J(z∗, r∗) =

 − 4ξβγ
a2cqc−a2sqs

2ξN(acqc−asqs)
a2cqc−a2sqs

−[(Nacqc−2αγ)(a2cqc−a
2
sqs)+8ξβγ2][(Nasqs−2αγ)(a2sqs−a

2
cqc)−8ξβγ2]

4N2γ(acqc−asqs)2(a2cqc−a2sqs)
0


assuming positive biomass at the equilibrium z∗ = 4(cc−cs)γ

a2cqc−as2qs
> 0, the Jacobian has the form

J(z∗, r∗) =

 J11 < 0 J12

J21 0

 , with characteristic polynomial λ2 − J11λ − J12J21 = 0. From the

fact that Trace(J) < 0 we deduce that E∗ is stable (either a spiral or a node) whenever J12J21 < 0,

i.e. ξ̂ < ξ < ξ, or a saddle point whenever J12J21 > 0, i.e. ξ < ξ < ξ̂.

To sum up: (i) in the case ξ̂ < ξ < ξ, E∗ is stable (spiral or node) with saddle points Êẑ,0 and

Ez,1; (ii) in the case ξ < ξ < ξ̂, E∗ is a saddle with stable nodes Êẑ,0 and Ez,1; (iii) in the other

cases E∗ is unfeasible. Moreover: (iv) at ξ = ξ̂ (ξ = ξ) a transcritical bifurcation occurs at which

E∗ and Êẑ,0 (respectively E∗ and Ez,1) exchange their stability properties.

Appendix C. Optimal Control of fishing technologies

Assume that agents employ the Nash strategies (4) but they agree to fix optimally r (the fraction

of agents using the ”standard” technology) in order to maximize total industry profits. Otherwise,

we could interpret this case as if a regulator imposes the share of agent employing the standard

technology in order to maximize intertemporal profits, letting agents adopt myopic harvesting

strategies (4). The regulator’s problem is

max
r(t)∈[0,1]

+∞∫
0

e−δt
[(
r(t)

(
a2
sqs
4γ

z(t)− cs
)

+ (1− r(t))
(
a2
cqc
4γ

z(t)− cc
))]

dt (C.1)

s.t.

·
z = G(z(t))−N

[
r(t)

asqs
2γ

z(t) + (1− r(t))acqc
2γ

z(t)

]
(C.2)

z(t) ≥ 0 (C.3)

where δ is the instantaneous discount rate.
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The current value Hamiltonian function is linear in the control r:

H =
1

4γ

(
4λγG(z)− 4ccγ + a2

cqcz − 2Nacqcλz + p(λ, z) · r
)

where the switching function p(λ, z) is given by

p(λ, z) = 4γ(cc − cs)− z
(
a2
cqc − a2

sqs
)

+ 2Nλz (acqc − asqs) (C.4)

The optimal control is either ’bang-bang’ or singular:

r∗ =


0 if p(λ, z) < 0

singular if p(λ, z) = 0

1 if p(λ, z) > 0

(C.5)

If p(λ, z) = 0 over an interval [t1, t2], then a singular control is required. The singular steady

state can be determined according to [13]. At a steady state
·
z =

·
λ = 0, the following modified

’golden-rule’ condition holds

δ = G′(z∗)− Nacasqcqs(ac − as)z∗2 − 8(cc − cs)γ2G(z∗)

2γz∗ ((a2
cqc − a2

sqs) z
∗ − 4γ(cc − cs))

(C.6)

Assuming G(z) = z (α− βz), we can calculate numerically (or analytically) a unique singular

steady state z∗. The optimal singular control r∗ can be then determined by substituting z∗ in the

motion equation with
·
z = 0, i.e.

r∗ =
Nacqc − 2γ (α− βz∗)

N (acqc − asqs)

For such a problem the optimal harvest strategy consists in bang-bang control only or in the

most rapid approach to the equilibrium z∗ through some combination of bang-bang controls and

singular control, see [13] for further discussions on the topic.
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