40 research outputs found

    Detailed clay mineralogy of the TriassicJurassic boundary section at Kendlbachgraben (Northern Calcareous Alps, Austria)

    Get PDF
    The Triassic-Jurassic boundary (TJB) is marked by one of the five largest Phanerozoic mass extinctions. To constrain existing models for TJB events, we obtained a stratigraphically highly resolved dataset from a marine section at Kendlbachgraben, Austria. The topmost Triassic Ko¨ssen Formation contains low to medium-charged smectite and vermiculite as alteration products of mafic-ultramafic minerals. The clay minerals in the boundary mudstone are kaolinite 5 illite + muscovite >> smectite > chlorite. Predominant kaolinite suggests humid climate and abundant terrigenous input. In the lowermost Jurassic, the clay mineral pattern changes to illite + muscovite >> kaolinite >> smectite, which reflects change to less humid and more moderate climate. The topmost Ko¨ssen Formation also contains clay spherules. Their composition, shape and size indicate that they are alteration products of airborne volcanic glass droplets solidified in the air, settled in the sea and altered rapidly with negligible transport in terrestrial or marine environments. Our data are consistent with sudden climatic change at the TJB, as a result of large-scale volcanic activity of the Central Atlantic Magmatic Province which produced distal airfall volcanic ash

    Mechanical Activation of Deposited Brown Coal Fly Ash in Stirred Media Mill

    No full text
    Present paper deals with the mechanical activation of deposited brown coal fly ash in a high energy density mill. The mechanical activation was carried out in a laboratory scale stirred media mill using various rotor circumferential speed (5 and 7 m/s), and different grinding time (from 1 min up to 180 min). The consumed energy was measured during the grinding process. Furthermore, particle size distribution and specific surface area were determined using laser particle size analyzer. The structural changes were detected by Fourier transform infrared spectroscopy. Additionally, transformation in mineralogical phases was measured by X-ray diffraction, as well as particle morphology and crystal defects were determined by transmission electron microscopy. As a result of the investigation, relationship between the technological parameters of the grinding and the properties of the ground material was created. It was found that there is a certain mechanochemical effect on the crystal structure of fly ash components in the stirred media mill, as it was revealed by X-ray diffraction and transmission electron microscopy. The most efficient grinding parameters were determined

    Hardground, gap and thin black shale: spatial heterogeneity of arrested carbonate sedimentation during the Jenkyns Event (T-OAE) in a Tethyan pelagic Basin (Gerecse Mts, Hungary)

    No full text
    AbstractThe Jenkyns Event or Toarcian Oceanic Anoxic Event was an episode of severe environmental perturbations reflected in carbon isotope and other geochemical anomalies. Although well studied in the epicontinental basins in NW Europe, its effects are less understood in open marine environments. Here we present new geochemical (carbon isotope, CaCO3, [Mn]) and nannofossil biostratigraphic data from the Tölgyhát and Kisgerecse sections in the Gerecse Hills (Hungary). These sections record pelagic carbonate sedimentation near the margin of the Tethys Ocean. A negative carbon isotope excursion of c. 6‰ is observed in the Tölgyhát section, in a condensed clay and black shale layer where the CaCO3 content drops in association with the Jenkyns Event. At Kisgerecse, bio- and chemostratigraphic data suggest a gap in the lower Toarcian. The presence of an uppermost Pliensbachian hardground, the absence of the lowermost Toarcian Tenuicostatum ammonite zone and the condensed record of the Jenkyns Event at Tölgyhát, together with a condensed Tenuicostatum Zone and the missing negative carbon isotope anomaly at Kisgerecse, imply arrested carbonate sedimentation. A calcification crisis and sea-level rise together led to a decrease in carbonate production and terrigenous input, suggesting that volcanogenic CO2-driven global warming may have been their common cause.</jats:p

    Bentonite as eco-friendly natural mineral support for Pd/CoFe2O4 catalyst applied in toluene diamine synthesis

    No full text
    Abstract Toluene diamine (TDA) is a major raw material in the polyurethane industry and thus, its production is highly important. TDA is obtained through the catalytic hydrogenation of 2,4-dinitrotoluene (2,4-DNT). In this study a special hydrogenation catalyst has been developed by decomposition cobalt ferrite nanoparticles onto a natural clay-oxide nanocomposite (bentonite) surface using a microwave-assisted solvothermal method. The catalyst particles were examined by TEM and X-ray diffraction. The palladium immobilized on the bentonite crystal surface was identified using an XRD and HRTEM device. The obtained catalyst possesses the advantageous property of being easily separable due to its magnetizability on a natural mineral support largely available and obtained through low carbon- and energy footprint methods. The catalyst demonstrated outstanding performance with a 2,4-DNT conversion rate exceeding 99% along with high yields and selectivity towards 2,4-TDA and all of this achieved within a short reaction time. Furthermore, the developed catalyst exhibited excellent stability, attributed to the strong interaction between the catalytically active metal and its support. Even after four cycles of reuse, the catalytic activity remained unaffected and the Pd content of the catalyst did not change, which indicates that the palladium component remained firmly attached to the magnetic support's surface
    corecore