1,005 research outputs found

    Valence Bond Solids for Quantum Computation

    Get PDF
    Cluster states are entangled multipartite states which enable to do universal quantum computation with local measurements only. We show that these states have a very simple interpretation in terms of valence bond solids, which allows to understand their entanglement properties in a transparent way. This allows to bridge the gap between the differences of the measurement-based proposals for quantum computing, and we will discuss several features and possible extensions

    Quantum phase gate for photonic qubits using only beam splitters and post-selection

    Get PDF
    We show that a beam splitter of reflectivity one-third can be used to realize a quantum phase gate operation if only the outputs conserving the number of photons on each side are post-selected.Comment: 6 pages RevTex, including one figur

    Pulse Control of Decoherence in a Qubit Coupled with a Quantum Environment

    Full text link
    We study the time evolution of a qubit linearly coupled with a quantum environment under a sequence of short pi pulses. Our attention is focused on the case where qubit-environment interactions induce the decoherence with population decay. We assume that the environment consists of a set of bosonic excitations. The time evolution of the reduced density matrix for the qubit is calculated in the presence of periodic short pi pulses. We confirm that the decoherence is suppressed if the pulse interval is shorter than the correlation time for qubit-environment interactions.Comment: 5 pages, 2figure

    Selfsimilarity and growth in Birkhoff sums for the golden rotation

    Full text link
    We study Birkhoff sums S(k,a) = g(a)+g(2a)+...+g(ka) at the golden mean rotation number a with periodic continued fraction approximations p(n)/q(n), where g(x) = log(2-2 cos(2 pi x). The summation of such quantities with logarithmic singularity is motivated by critical KAM phenomena. We relate the boundedness of log- averaged Birkhoff sums S(k,a)/log(k) and the convergence of S(q(n),a) with the existence of an experimentally established limit function f(x) = lim S([x q(n)])(p(n+1)/q(n+1))-S([x q(n)])(p(n)/q(n)) for n to infinity on the interval [0,1]. The function f satisfies a functional equation f(ax) + (1-a) f(x)= b(x) with a monotone function b. The limit lim S(q(n),a) for n going to infinity can be expressed in terms of the function f.Comment: 14 pages, 8 figure

    Experimentally obtaining the Likeness of Two Unknown Quantum States on an NMR Quantum Information Processor

    Full text link
    Recently quantum states discrimination has been frequently studied. In this paper we study them from the other way round, the likeness of two quantum states. The fidelity is used to describe the likeness of two quantum states. Then we presented a scheme to obtain the fidelity of two unknown qubits directly from the integral area of the spectra of the assistant qubit(spin) on an NMR Quantum Information Processor. Finally we demonstrated the scheme on a three-qubit quantum information processor. The experimental data are consistent with the theoretical expectation with an average error of 0.05, which confirms the scheme.Comment: 3 pages, 4 figure

    Efficient solvability of Hamiltonians and limits on the power of some quantum computational models

    Full text link
    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently ("exactly") solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.Comment: 6 pages; no figure

    The statistical strength of experiments to reject local realism with photon pairs and inefficient detectors

    Full text link
    Because of the fundamental importance of Bell's theorem, a loophole-free demonstration of a violation of local realism (LR) is highly desirable. Here, we study violations of LR involving photon pairs. We quantify the experimental evidence against LR by using measures of statistical strength related to the Kullback-Leibler (KL) divergence, as suggested by van Dam et al. [W. van Dam, R. Gill and P. Grunwald, IEEE Trans. Inf. Theory. 51, 2812 (2005)]. Specifically, we analyze a test of LR with entangled states created from two independent polarized photons passing through a polarizing beam splitter. We numerically study the detection efficiency required to achieve a specified statistical strength for the rejection of LR depending on whether photon counters or detectors are used. Based on our results, we find that a test of LR free of the detection loophole requires photon counters with efficiencies of at least 89.71%, or photon detectors with efficiencies of at least 91.11%. For comparison, we also perform this analysis with ideal unbalanced Bell states, which are known to allow rejection of LR with detector efficiencies above 2/3.Comment: 18 pages, 3 figures, minor changes (add more references, replace the old plots, etc.)

    Quantum error-correcting codes associated with graphs

    Full text link
    We present a construction scheme for quantum error correcting codes. The basic ingredients are a graph and a finite abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification of the 1-error correcting property of fivefold codes in any dimension. As new examples we construct a large class of codes saturating the singleton bound, as well as a tenfold code detecting 3 errors.Comment: 8 pages revtex, 5 figure

    Dynamical Decoupling of Open Quantum Systems

    Get PDF
    We propose a novel dynamical method for beating decoherence and dissipation in open quantum systems. We demonstrate the possibility of filtering out the effects of unwanted (not necessarily known) system-environment interactions and show that the noise-suppression procedure can be combined with the capability of retaining control over the effective dynamical evolution of the open quantum system. Implications for quantum information processing are discussed.Comment: 4 pages, no figures; Plain ReVTeX. Final version to appear in Physical Review Letter
    • 

    corecore