278 research outputs found
Spin polaron theory for the photoemission spectra of layered cobaltates
Recently, strong reduction of the quasiparticle peaks and pronounced
incoherent structures have been observed in the photoemission spectra of
layered cobaltates. Surprisingly, these many-body effects are found to increase
near the band insulator regime. We explain these unexpected observations in
terms of a novel spin-polaron model for CoO_2 planes which is based on a fact
of the spin-state quasidegeneracy of Co^{3+} ions in oxides. Scattering of the
photoholes on spin-state fluctuations suppresses their coherent motion. The
observed ``peak-dip-hump'' type lineshapes are well reproduced by the theory.Comment: 4 pages, 4 figure
Study of the spin- Hubbard-Kondo lattice model by means of the Composite Operator Method
We study the spin- Hubbard-Kondo lattice model by means of the
Composite Operator Method, after applying a Holstein-Primakov transformation.
The spin and particle dynamics in the ferromagnetic state are calculated by
taking into account strong on-site correlations between electrons and
antiferromagnetic exchange among spins, together with usual Hund
coupling between electrons and spins
Orbital order out of spin disorder: How to measure the orbital gap
The interplay between spin and orbital degrees of freedom in the Mott-Hubbard
insulator is studied by considering an orbitally degenerate superexchange
model. We argue that orbital order and the orbital excitation gap in this model
are generated through the order-from-disorder mechanism known previously from
frustrated spin models. We propose that the orbital gap should show up
indirectly in the dynamical spin structure factor; it can therefore be measured
using the conventional inelastic neutron scattering method
Orbital liquid in three dimensional Mott insulator:
We present a theory of spin and orbital states in Mott insulator .
The spin-orbital superexchange interaction between ions in cubic
crystal suffers from a pathological degeneracy of orbital states at classical
level. Quantum effects remove this degeneracy and result in the formation of
the coherent ground state, in which the orbital moment of level is
fully quenched. We find a finite gap for orbital excitations. Such a disordered
state of local degrees of freedom on unfrustrated, simple cubic lattice is
highly unusual. Orbital liquid state naturally explains observed anomalies of
.Comment: 5 pages, 3 figure
Order from disorder: Quantum spin gap in magnon spectra of LaTiO_3
A theory of the anisotropic superexchange and low energy spin excitations in
a Mott insulator with t_{2g} orbital degeneracy is presented. We observe that
the spin-orbit coupling induces frustrating Ising-like anisotropy terms in the
spin Hamiltonian, which invalidate noninteracting spin wave theory. The
frustration of classical states is resolved by an order from disorder
mechanism, which selects a particular direction of the staggered moment and
generates a quantum spin gap. The theory explains well the observed magnon gaps
in LaTiO_3. As a test case, a specific prediction is made on the splitting of
magnon branches at certain momentum directions.Comment: 5 pages, 2 figures, final versio
Entropy Driven Dimerization in a One-Dimensional Spin-Orbital Model
We study a new version of the one-dimensional spin-orbital model with spins
S=1 relevant to cubic vanadates. At small Hund's coupling J_H we discover
dimerization in a pure electronic system solely due to a dynamical spin-orbital
coupling. Above a critical value J_H, a uniform ferromagnetic state is
stabilized at zero temperature. More surprisingly, we observe a temperature
driven dimerization of the ferrochain, which occurs due to a large entropy
released by dimer states. This dynamical dimerization seems to be the mechanism
driving the peculiar intermediate phase of YVO_3.Comment: 5 pages, 4 figure
Spin and orbital excitation spectrum in the Kugel-Khomskii model
We discuss spin and orbital ordering in the twofold orbital degenerate
superexchange model in three dimensions relevant to perovskite transition metal
oxides. We focus on the particular point on the classical phase diagram where
orbital degeneracy is lifted by quantum effects exclusively. Dispersion and
damping of the spin and orbital excitations are calculated at this point taking
into account their mutual interaction. Interaction corrections to the
mean-field order parameters are found to be small. We conclude that
quasi-one-dimensional Neel spin order accompanied by the uniform
d_{3z^2-r^2}-type orbital ordering is stable against quantum fluctuations.Comment: 4 pages with 3 PS figures, 1 table, RevTeX, accepted to Phys. Rev. B.
Rapid Communicatio
Spin Order due to Orbital Fluctuations: Cubic Vanadates
We investigate the highly frustrated spin and orbital superexchange
interactions in cubic vanadates. The fluctuations of orbitals trigger
a {\it novel mechanism of ferromagnetic interactions} between spins S=1 of
V ions along one of the cubic directions which operates already in the
absence of Hund's rule exchange , and leads to the C-type
antiferromagnetic phase in LaVO. The Jahn-Teller effect can stabilize the
orbital ordering and the G-type antiferromagnetic phase at low temperatures,
but large entropy due to orbital fluctuations favors again the C-phase at
higher temperatures, as observed in YVO.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Hidden Symmetries and their Consequences in Cubic Perovskites
The five-band Hubbard model for a band with one electron per site is a
model which has very interesting properties when the relevant ions are located
at sites with high (e. g. cubic) symmetry. In that case, if the crystal field
splitting is large one may consider excitations confined to the lowest
threefold degenerate orbital states. When the electron hopping matrix
element () is much smaller than the on-site Coulomb interaction energy
(), the Hubbard model can be mapped onto the well-known effective
Hamiltonian (at order ) derived by Kugel and Khomskii (KK). Recently
we have shown that the KK Hamiltonian does not support long range spin order at
any nonzero temperature due to several novel hidden symmetries that it
possesses. Here we extend our theory to show that these symmetries also apply
to the underlying three-band Hubbard model. Using these symmetries we develop a
rigorous Mermin-Wagner construction, which shows that the three-band Hubbard
model does not support spontaneous long-range spin order at any nonzero
temperature and at any order in -- despite the three-dimensional lattice
structure. Introduction of spin-orbit coupling does allow spin ordering, but
even then the excitation spectrum is gapless due to a subtle continuous
symmetry. Finally we showed that these hidden symmetries dramatically simplify
the numerical exact diagonalization studies of finite clusters.Comment: 26 pages, 3 figures, 520 KB, submitted Phys. Rev.
- …