149 research outputs found

    Thermal conductivity of the one-dimensional Fermi-Hubbard model

    Get PDF
    We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interactions and moreover, we compute its filling dependence at infinite temperature. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultra-cold quantum gas experiments and for transport measurements with quasi-one dimensional materials

    Cavity quantum materials

    Get PDF
    The emergent field of cavity quantum materials bridges collective many-body phenomena in solid state platforms with strong light–matter coupling in cavity quantum electrodynamics. This brief review provides an overview of the state of the art of cavity platforms and highlights recent theoretical proposals and first experimental demonstrations of cavity control of collective phenomena in quantum materials. This encompasses light–matter coupling between electrons and cavity modes, cavity superconductivity, cavity phononics and ferroelectricity, correlated systems in a cavity, light–magnon coupling, cavity topology and the quantum Hall effect, as well as super-radiance. An outlook of potential future developments is given

    Spin and thermal conductivity of quantum spin ladders

    Get PDF
    We study the spin and thermal conductivity of spin-1/2 ladders at finite temperature. This is relevant for experiments with quantum magnets. Using a state-of-the-art density matrix renormalization group algorithm, we compute the current autocorrelation functions on the real-time axis and then carry out a Fourier integral to extract the frequency dependence of the corresponding conductivities. The finite-time error is analyzed carefully. We first investigate the limiting case of spin-1/2 XXZ chains, for which our analysis suggests non-zero dc-conductivities in all interacting cases irrespective of the presence or absence of spin Drude weights. For ladders, we observe that all models studied are normal conductors with no ballistic contribution. Nonetheless, only the high-temperature spin conductivity of XX ladders has a simple diffusive, Drude-like form, while Heisenberg ladders exhibit a more complicated low-frequency behavior. We compute the dc spin conductivity down to temperatures of the order of T~0.5J, where J is the exchange coupling along the legs of the ladder. We further extract mean-free paths and discuss our results in relation to thermal conductivity measurements on quantum magnets

    Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity

    Get PDF
    Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context. Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity. We unveil quantum Floquet engineering signatures in these dynamical response functions, such as analogs to dynamical localization and replica side bands, complementing paradigmatic classical Floquet engineering results. Strikingly, the Drude weight in the optical conductivity of the electrons is partially suppressed by the presence of a single cavity mode through an induced electron-electron interaction

    Contemplating skill-based authentication

    Get PDF
    Humans develop skills as they go through their lives: some are fairly common, such as reading, but others are developed to maximise employment opportunities. These skills develop over a long period of time and are much rarer. Here we consider whether we can exploit this reality in the security arena, specifically to achieve a stronger form of authentication. Authentication has traditionally been performed based on what users know, hold or are. The first is the most popular, in the form of the password. This is often referred to as “knowledge-based” authentication. Yet, rigorously following guidelines for password creation produces forgettable gibberish and nonsense strings, not knowledge. Nonsense is hard to remember and users engage in a number of coping strategies to ameliorate this, and these tend to weaken the authenticator. It would be beneficial to find a way of reducing this memorial load, to identify a more usable mechanism. This is hard: usually reducing the memorial load also makes the secret easier to guess. The challenge is in finding a way to reduce memory load while holding the line as far as strength is concerned. Here we contemplate exploiting recognition of artefacts resulting from experts practicing their craft: “skill-based” authentication. This should reduce the memorial load and effort, but also, crucially, make it harder for a random intruder to replicate. We report on how we trialled SNIPPET, a prototype of an authentication mechanism that relied on an expert programmer identifying his/her own code snippets from successive challenge sets. We found that our participants were all able to identify their own code snippets and that other participants were unable to guess these, even when they observed the legitimate person authenticating beforehand. These findings are not conclusive given the small number of participants but they do show promise and suggest that this is an area worth pursuing. We conclude by returning to the three NIST-identified forms of authentication and consider how SNIPPET can be positioned within the general authentication arena

    Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures

    Get PDF
    The removal of styrene was studied using 2 biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and 1 biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for biofilters and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m-3 h-1 and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm-3, removal efficiencies between 70 and 95% were obtained in the 3 bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m-3 h-1 were obtained for the first quarter of the BF1-P and BF2-C, respectively (IL of 173 g m-3 h-1 and EBRT of 60 s in BF1-P; IL of 89 g m-3 h-1 and EBRT of 90 s in BF2-C). A maximum EC of 52 g m-3 h-1 was obtained for the first third of the BTF (IL of 116 g m-3 h-1, EBRT of 45 s). Problems regarding high pressure drop appeared in the peat biofilter, whereas drying episodes occurred in the coconut fibre biofilter. DGGE revealed that the pure culture used for biofilter inoculation was not detected by day 105. Although 2 different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option

    Dynamic Mathematical Modelling of the Removal of Hydrophilic VOCs by Biotrickling Filters

    Get PDF
    A mathematical model for the simulation of the removal of hydrophilic compounds using biotrickling filtration was developed. The model takes into account that biotrickling filters operate by using an intermittent spraying pattern. During spraying periods, a mobile liquid phase was considered, while during non-spraying periods, a stagnant liquid phase was considered. The model was calibrated and validated with data from laboratory- and industrial-scale biotrickling filters. The laboratory experiments exhibited peaks of pollutants in the outlet of the biotrickling filter during spraying periods, while during non-spraying periods, near complete removal of the pollutant was achieved. The gaseous outlet emissions in the industrial biotrickling filter showed a buffered pattern; no peaks associated with spraying or with instantaneous variations of the flow rate or inlet emissions were observed. The model, which includes the prediction of the dissolved carbon in the water tank, has been proven as a very useful tool in identifying the governing processes of biotrickling filtration

    Binary Models for Marginal Independence

    Full text link
    Log-linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log-linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach taken is graphical and draws on analogies to multivariate Gaussian models for marginal independence. For the graphical model representation we use bi-directed graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed using a version of the Iterated Conditional Fitting algorithm. Finally we consider combining these models with symmetry restrictions

    Biotrickling filtration of isopropanol under intermittent loading conditions

    Get PDF
    This paper investigates the removal of isopropanol by gas phase biotrickling filtration. Two plastic packing materials, one structured and one random, have been evaluated in terms of oxygen mass transfer and isopropanol removal efficiency (RE). Oxygen mass transfer experiments were performed at gas velocities of 104 and 312 m h-1 and liquid velocities between 3 and 33 m h-1. Both materials showed similar mass transfer coefficients up to liquid velocities of 15 m h-1. At greater liquid velocities, the structured packing exhibited greater oxygen mass transfer coefficients. Biotrickling filtration experiments were carried out at inlet loads (IL) from 20 to 65 g C m-3 h -1 and empty bed residence times (EBRT) from 15 14 to 160 s. To simulate typical industrial emissions, intermittent isopropanol loading (16 h/day, 5 16 day/week) and intermittent spraying frequency (15 min/1.5 hours) were applied. Maximum elimination capacity (EC) of 51 g C m-3 h -1 has been obtained for the random packing (IL of 65 g C m-3 h -1 17 , EBRT of 18 50 s). The decrease in irrigation frequency to 15 min every 3 hours caused a decrease in the outlet emissions from 86 to 59 mg C Nm-3 (inlet of 500 mg C Nm-3). The expansion of spraying to night and weekend periods promoted the degradation of the isopropanol accumulated in the water tank during the day, reaching effluent concentrations as low as 44 mg C Nm-3. After a 7 week starvation period, theperformance was recovered in less than 10 days, proving the robustness of the proces
    • …
    corecore