4,629 research outputs found

    On the effect of prior assumptions in Bayesian model averaging with applications to growth regression

    Get PDF
    This paper examines the problem of variable selection in linear regression models. Bayesian model averaging has become an important tool in empirical settings with large numbers of potential regressors and relatively limited numbers of observations. The paper analyzes the effect of a variety of prior assumptions on the inference concerning model size, posterior inclusion probabilities of regressors, and predictive performance. The analysis illustrates these issues in the context of cross-country growth regressions using three datasets with 41 to 67 potential drivers of growth and 72 to 93 observations. The results favor particular prior structures for use in this and related contexts.Educational Technology and Distance Education,Geographical Information Systems,Statistical&Mathematical Sciences,Science Education,Scientific Research&Science Parks

    Jointness in Bayesian variable selection with applications to growth regression

    Get PDF
    The authors present a measure of jointness to explore dependence among regressors in the context of Bayesian model selection. The jointness measure they propose equals the posterior odds ratio between those models that include a set of variables and the models that only include proper subsets. They show its application in cross-country growth regressions using two data-sets from the model-averaging growth literature.Statistical&Mathematical Sciences,Climate Change,Educational Technology and Distance Education,Economic Theory&Research,Achieving Shared Growth

    Benchmark priors for Bayesian models averaging

    Get PDF
    In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, 'diffuse' priors on model-specific parameters can lead to quite unexpected consequences. Here we focus on the practically relevant situation where we need to entertain a (large) number of sampling models and we have (or wish to use) little or no subjective prior information. We aim at providing an 'automatic' or 'benchmark' prior structure that can be used in such cases. We focus on the Normal linear regression model with uncertainty in the choice of regressors. We propose a partly noninformative prior structure related to a Natural Conjugate gg-prior specification, where the amount of subjective information requested from the user is limited to the choice of a single scalar hyperparameter g0jg_{0j}. The consequences of different choices for g0jg_{0j} are examined. We investigate theoretical properties, such as consistency of the implied Bayesian procedure. Links with classical information criteria are provided. In addition, we examine the finite sample implications of several choices of g0jg_{0j} in a simulation study. The use of the MC3^3 algorithm of Madigan and York (1995), combined with efficient coding in Fortran, makes it feasible to conduct large simulations. In addition to posterior criteria, we shall also compare the predictive performance of different priors. A classic example concerning the economics of crime will also be provided and contrasted with results in the literature. The main findings of the paper will lead us to propose a 'benchmark' prior specification in a linear regression context with model uncertainty.Bayes factors, Markov chain, Monte Carlo, Posterior odds, Prior elicitation

    Total synthesis and biological evaluation of the tetramic acid based natural product harzianic acid and its stereoisomers

    Get PDF
    Financial support for this project was provided by Cancer Research UK (Grant No. C21383/A6950)The bioactive natural product harzianic acid was prepared for the first time in just six steps (longest linear sequence) with an overall yield of 22%. The identification of conditions to telescope amide bond formation and a Lacey-Dieckmann reaction into one pot proved important. The three stereoisomers of harzianic acid were also prepared, providing material for comparison of their biological activity. While all of the isomers promoted root growth, improved antifungal activity was unexpectedly associated with isomers in the enantiomeric series opposite that of harzianic acid.Publisher PDFPeer reviewe

    First Digit Distribution of Hadron Full Width

    Full text link
    A phenomenological law, called Benford's law, states that the occurrence of the first digit, i.e., 1,2,...,91,2,...,9, of numbers from many real world sources is not uniformly distributed, but instead favors smaller ones according to a logarithmic distribution. We investigate, for the first time, the first digit distribution of the full widths of mesons and baryons in the well defined science domain of particle physics systematically, and find that they agree excellently with the Benford distribution. We also discuss several general properties of Benford's law, i.e., the law is scale-invariant, base-invariant, and power-invariant. This means that the lifetimes of hadrons follow also Benford's law.Comment: 8 latex pages, 4 figures, final version in journal publicatio

    Mixtures of g-priors for Bayesian model averaging with economic applications

    Get PDF
    We examine the issue of variable selection in linear regression modeling, where we have a potentially large amount of possible covariates and economic theory offers insufficient guidance on how to select the appropriate subset. Bayesian Model Averaging presents a formal Bayesian solution to dealing with model uncertainty. Our main interest here is the effect of the prior on the results, such as posterior inclusion probabilities of regressors and predictive performance. We combine a Binomial-Beta prior on model size with a g-prior on the coefficients of each model. In addition, we assign a hyperprior to g, as the choice of g has been found to have a large impact on the results. For the prior on g, we examine the Zellner-Siow prior and a class of Beta shrinkage priors, which covers most choices in the recent literature. We propose a benchmark Beta prior, inspired by earlier findings with fixed g, and show it leads to consistent model selection. Inference is conducted through a Markov chain Monte Carlo sampler over model space and g. We examine the performance of the various priors in the context of simulated and real data. For the latter, we consider two important applications in economics, namely cross-country growth regression and returns to schooling. Recommendations to applied users are provided

    Connection Between Type A and E Factorizations and Construction of Satellite Algebras

    Full text link
    Recently, we introduced a new class of symmetry algebras, called satellite algebras, which connect with one another wavefunctions belonging to different potentials of a given family, and corresponding to different energy eigenvalues. Here the role of the factorization method in the construction of such algebras is investigated. A general procedure for determining an so(2,2) or so(2,1) satellite algebra for all the Hamiltonians that admit a type E factorization is proposed. Such a procedure is based on the known relationship between type A and E factorizations, combined with an algebraization similar to that used in the construction of potential algebras. It is illustrated with the examples of the generalized Morse potential, the Rosen-Morse potential, the Kepler problem in a space of constant negative curvature, and, in each case, the conserved quantity is identified. It should be stressed that the method proposed is fairly general since the other factorization types may be considered as limiting cases of type A or E factorizations.Comment: 20 pages, LaTeX, no figure, to be published in J. Phys.

    Generalized Morse Potential: Symmetry and Satellite Potentials

    Get PDF
    We study in detail the bound state spectrum of the generalized Morse potential~(GMP), which was proposed by Deng and Fan as a potential function for diatomic molecules. By connecting the corresponding Schr\"odinger equation with the Laplace equation on the hyperboloid and the Schr\"odinger equation for the P\"oschl-Teller potential, we explain the exact solvability of the problem by an so(2,2)so(2,2) symmetry algebra, and obtain an explicit realization of the latter as su(1,1)su(1,1)su(1,1) \oplus su(1,1). We prove that some of the so(2,2)so(2,2) generators connect among themselves wave functions belonging to different GMP's (called satellite potentials). The conserved quantity is some combination of the potential parameters instead of the level energy, as for potential algebras. Hence, so(2,2)so(2,2) belongs to a new class of symmetry algebras. We also stress the usefulness of our algebraic results for simplifying the calculation of Frank-Condon factors for electromagnetic transitions between rovibrational levels based on different electronic states.Comment: 23 pages, LaTeX, 2 figures (on request). one LaTeX problem settle

    Positronium Hyperfine Splitting in Non-commutative Space at the Order α6\alpha^6

    Full text link
    We obtain positronium Hyperfine Splitting owing to the non-commutativity of space and show that, in the leading order, it is proportional to θα6\theta \alpha^6 where, θ\theta is the parameter of non-commutativity. It is also shown that spatial non-commutativity splits the spacing between n=2n=2 triplet excited levels E(23S1)E(23P2)E(2^3S_1)\to E(2^3P_2) which provides an experimental test on the non-commutativity of space.Comment: 7 pages, 2 figures, to appear in Phys. Rev.

    Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability

    Get PDF
    Purpose Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lungMRI protocol in COPD. Materials and Methods 20 prospectively enrolled COPD patients (GOLD I-IV) underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging) and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging),consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed. Results Median global scores [10(Q1:8.00;Q3:16.00) vs. 11(Q1:6.00;Q3:15.00)] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (kappa = 0.86, 95% CI = 0.81-0.91). Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (kappa = 0.64-1.00),whereas the agreement for the diagnosis of dystelectasis/effusion (kappa = 0.42, 95% CI = 0.00-0.93) was "moderate" and of tracheal abnormalities (kappa = 0.21, 95% CI = 0.00-0.75) "fair". Most MRI acquisitions showed at least diagnostic quality at MRI1 (276 of 278) and MRI2 (259 of 264). Conclusion Morpho-functional 1H-MRI can be obtained with reproducible image quality and high short-term test-retest reliability for COPD-related morphological and functional changes of the lung. This underlines its potential value for the monitoring of regional lung characteristics in COPD trials
    corecore