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1. Introduction

Performing inference on the determinants of GDP growth is challenging because, in addition to
the complexity and heterogeneity of the objects of study, a key characteristic of the empirics of
growth lies in its open-endedness (Brock and Durlauf, 2001). Open-endedness entails that, at
a conceptual level, alternative theories may suggest additional determinants of growth without
necessarily excluding determinants proposed by other theories. The absence, at the theoretical
level, of such tradeoff leads to substantial model uncertainty, at the empirical level, about which
variables should be included in a growth regression. In practice, a substantial number of growth
determinants may be included as explanatory variables. If two such variables are capturing different
sources of relevant information and should both be included, we will talk of jointness (as defined
later), whereas if they perform very similar roles they should not appear jointly, which we will
denote by disjointness. We could think of these situations as characterized by the covariates being
complements or substitutes, respectively.

Various approaches to deal with this model uncertainty have appeared in the literature: early
contributions are the extreme-bounds analysis in Levine and Renelt (1992) and the confidence-
based analysis in Sala-i-Martin (1997). Fernández et al. (2001b, FLS henceforth) use Bayesian
model averaging (BMA, see Hoeting et al., 1999) to handle the model uncertainty that is inherent in
growth regressions, as discussed above. BMA naturally deals with model uncertainty by averaging
posterior inference on quantities of interest over models, with the posterior model probabilities
as weights. Other papers using BMA in this context are León-González and Montolio (2004)
and Papageorgiou and Masanjala (2005). Alternative ways of dealing with model uncertainty are
proposed in Sala-i-Martin et al. (2004, SDM henceforth),1 and Tsangarides (2005). Insightful
discussions of model uncertainty in growth regressions can be found in Brock and Durlauf (2001)
and Brock, Durlauf and West (2003). All of these studies adopt a Normal linear regression model
and consider modelling n growth observations in y using an intercept and explanatory variables
from a set of k variables in Z, allowing for any subset of the variables in Z to appear in the model.
This results in 2k possible models, which will thus be characterized by the selection of regressors.
We call model Mj the model with the 0 ≤ kj ≤ k regressors grouped in Zj , leading to

y|α, βj , σ ∼ N(αιn + Zjβj , σ
2I), (1)

where ιn is a vector of n ones, βj ∈ <kj groups the relevant regression coefficients and σ ∈ <+ is
a scale parameter.

Based on theoretical considerations and simulation results in Fernández et al. (2001a), FLS
adopt the following prior distribution for the parameters in Mj :

p(α, βj , σ|Mj) ∝ σ−1f
kj

N (β|0, σ2(gZ ′
jZj)−1), (2)

We thank Gernot Doppelhofer for stimulating our interest on these issues, and for kindly making a preliminary draft
of Doppelhofer and Weeks (2006) available to us.
1 SDM’s procedure BACE in fact uses approximate Bayesian posterior probabilities of regression models based on the

Schwarz criterion, as proposed by Raftery (1995).
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where fq
N (w|m,V ) denotes the density function of a q-dimensional Normal distribution on w with

mean m and covariance matrix V and they choose g = 1/max{n, k2}. Finally, the components of
β not appearing in Mj are exactly zero, represented by a prior point mass at zero.

The prior model probabilities are specified by P (Mj) = θkj (1 − θ)k−kj , which implies that
each regressor enters a model independently of the others with prior probability θ. Thus, the prior
expected model size is θk. We follow Fernández et al. (2001a) and FLS in choosing θ = 0.5,
which is a benchmark choice—implying that P (Mj) = 2−k and that expected model size is k/2.
Throughout this paper, we shall use the same prior as in FLS. An explicit analysis of alternative
priors in this context is the subject of current research.

FLS use a Markov chain Monte Carlo (MCMC) sampler to deal with the very large model
space (k = 41 for their data set, leading to 2.2 × 1012 possible models to consider), which
can easily be implemented through a Metropolis algorithm over model space alone—since the
marginal likelihoods and thus the posterior model odds between any two models are analytically
available; see FLS for details. Thus, the MCMC sampler is only implemented to deal with the
practical impossibility of exhaustive analysis of the model space: the chain will visit only the most
promising models, which are the ones with non-negligible posterior probability.

The results in FLS indicate that the posterior probability is spread widely among many models
(Table 1), which implies the superiority of BMA over choosing a single model but, precisely
because of its richness, also makes it harder to summarise posterior results.

Table 1. FLS Data: distribution of posterior model probability and model size.
(MCMC sampler with 2 million recorded draws after a burn-in of 1 million draws.)

Number Posterior Number of Regressors

of Models Prob. Mean St.Dev.

1 0.01 10 -

5 0.04 8.7 1.1

25 0.10 8.9 1.4

50 0.14 9.0 1.4

100 0.19 9.1 1.4

190 0.25 9.1 1.4

1,606 0.50 9.4 1.5

8,688 0.75 9.6 1.5

25,269 0.90 9.8 1.6

39,839 0.95 9.8 1.6

71,493 0.99 9.9 1.6

148,342 1.00 9.9 1.6

In related work, Doppelhofer and Weeks (2005, DW henceforth) analyse the same linear regres-
sion model (using the BACE method of SDM) and introduce a measure of jointness “to address
dependence among explanatory variables.” DW propose a jointness statistic defined as the log
ratio of the joint posterior inclusion probability of a set of variables over the product of the indi-
vidual posterior inclusion probabilities. Below we discuss this measure as well as another measure
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proposed by the same authors in a later paper.

In this paper we propose alternative measures of jointness for Bayesian variable selection, based
on probabilistic arguments and illustrate their application in the context of BMA. The next section
discusses measures of jointness, which will be applied to two different growth data sets: the FLS
data and the DW data in Section 3. The final section concludes.

2. Jointness in Bayesian Variable Selection

Consider two variables, i and j, and let P (i) denote the posterior probability of inclusion for
regressor i.2 P (i ∩ j) is the posterior probability of including both variables i and j. These
probabilities are simply defined as the sum of the posterior probabilities of all models that contain
regressor i (for P (i)) or regressors i and j (for P (i ∩ j)). Clearly P (i) ≥ P (i ∩ j).

DW define jointness as (the logarithm of):

JDW
ij =

P (i ∩ j)
P (i)P (j)

(3)

There are several problems associated with this measure. First, since JDW
ij = P (i|j) ÷ P (i) =

P (j|i) ÷ P (j), it can be verified that as either P (i) or P (j) approaches unity, then JDW
ij also

approaches unity—regardless of the behaviour of the other variable. In fact, it is bounded from
above asJDW

ij ≤ 1/ max{P (i), P (j)}. This means that when the inclusion probability of one of the
variables exceeds e−1 = 0.37 this variable can never be a “significant complement” (corresponding
to log(JDW

ij ) > 1) of any other variable in the data set according to the DW jointness measure.

Secondly, consider a case of extreme jointness where variables i and j always appear together;
then JDW

ij = P (i)−1 = P (j)−1 = P (i∩ j)−1 so the DW measure equals the reciprocal of P (i∩ j).
This makes comparisons of DW-jointness across different pairs of variables quite difficult, and is
not consistent with the fixed critical level used by DW. It also raises questions about interpretation,
since while P (i ∩ j) could itself be considered a natural measure of jointness, that does not apply
to its reciprocal.

Finally, contrary to the claim in DW, JDW
ij does not correspond to the posterior odds of models

including i and j vs models that include them individually. This ratio is properly defined in equation
(6) below.

In subsequent work, Doppelhofer and Weeks (2006, DWa henceforth) propose an alternative
jointness measure, based on the cross-product ratio of the binary indicators of variable inclusion.
For two regressors i and j this measure corresponds to (the logarithm of):

JDWa
ij =

P (i ∩ j)P (ı̃ ∩ ̃)
P (i ∩ ̃)P (ı̃ ∩ j)

, (4)

2 To economize on notation, we shall not make the dependence on the sample explicit, but it should be understood that
all posterior quantities are conditional on the observed sample.
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where ı̃ and ̃ stand for the exclusion of i and j, respectively. This measure can be written as

JDWa
ij =

P (i|j)
P (ı̃|j)

÷ P (i|̃)
P (ı̃|̃)

,

which clearly shows that JDWa
ij can be interpreted as the posterior odds of including i given that

j is included divided by the posterior odds of including i given that j is not included—rather than
the posterior odds interpretation given in DWa.

The measure JDWa
ij is undefined both (i) when either of the regressors is always included,

and (ii) when one of the regressors is never included. Furthermore, in practical situations where,
say, P (i) → 1, the measure depends crucially on the limit of the ratio P (ı̃ ∩ ̃)/P (ı̃ ∩ j) which
means that the (few) low-probability models without i can make the measure range all the way
from 0 (if they all include j) to ∞ (if they all exclude j). This critical dependence of the jointness
involving important variables on models with very low posterior probability seems an undesirable
characteristic.

We now present our own alternative jointness measures. Consider Fig. 1, where the posterior
probabilities of two variables are represented in a Venn diagram. As mentioned, a raw, yet natural,
measure of jointness is simply probability of joint inclusion, P (i∩ j)—i.e., the intersection shown
in the diagram. The diagram also suggests two better measures of jointness: (i) the joint probability
(i.e., intersection) relative to the probability of including either one (i.e., the union), and (ii) the
joint probability relative to the probability of including either one, but not both—i.e., excluding the
intersection itself. We shall denote these measures of jointness by J ?

ij and Jij .

 P( not i ∩ not j  )

P( i )                               P( j  )

P( i  ∩ j  )

Fig. 1. Jointness.

Thus, the measures of jointness proposed in this paper are:

J ?
ij =

P (i ∩ j)
P (i ∪ j)

=
P (i ∩ j)

P (i) + P (j)− P (i ∩ j)
∈ [0, 1] (5)

Jij =
P (i ∩ j)

P (i ∩ ̃) + P (j ∩ ı̃)
=

P (i ∩ j)
P (i) + P (j)− 2P (i ∩ j)

∈ [0,∞) (6)
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In the extreme jointness case discussed above (when i and j appear always together), whileJDW
ij =

P (i∩ j)−1, we have that JDWa
ij = ∞, J ?

ij = 1 and Jij = ∞, which are more intuitive and practical
as extreme values. In case that P (i) → 1, we obtain J ?

ij → P (j) and Jij → P (j)/(1 − P (j)),
which are well-behaved quantities in line with intuition.

Furthermore, note that Jij does indeed correspond to the posterior odds ratio of the models
including both i and j vs the models that include them only individually. Since this fact leads to a
straightforward interpretation and to a statistically meaningful metric, Jij is our preferred measure
of jointness. In particular, there is no need for calibration, as this measure has a clear and direct
interpretation in terms of model probabilities.

Another advantage of the measures proposed here is that they are easily extended to the case
of more than two regressors. In particular, we define multivariate jointness for general sets of
regressors S through two quantities: P (S), which is the total posterior probability assigned to
those models having all regressors in S, and P (⊂ S), defined as the posterior mass assigned to all
models including only proper subsets of S. Then we can generalise the measures above as follows:

J ?
S =

P (S)
P (⊂ S) + P (S)

∈ [0, 1] (7)

JS =
P (S)

P (⊂ S)
∈ [0,∞) (8)

Thus, the measure J ?
S is the posterior mass of the models containing all of S as a fraction of

the posterior mass assigned to all models having any (or all) of the regressors in S. As before, the
measure JS is the posterior odds ratio between those models having all the variables in the set S
and the models including only proper subsets of these variables.

3. Jointness of Growth Determinants

3.1. The FLS Data

We first illustrate the behaviour of our proposed measures of jointness using the growth data of
FLS. The latter data set contains k = 41 potential regressors to model the average per capita GDP
growth over 1960-1992 for a sample of n = 72 countries. 3

The results are based on an MCMC chain on model space with 2 million recorded draws,
after a burn-in of 1 million. The correlation between model visit frequencies and probabilities
computed on the basis of the exact posterior odds of the visited models is 0.992, indicating
excellent convergence. An estimate of the total model probability captured by the chain, computed
as in George and McCulloch (1997), is 70%.4 Results are virtually identical to those obtained in

3 The dataset and the code used in FLS are available on the Journal of Applied Econometrics code and data archive at
http://qed.econ.queensu.ca/jae/. The updated code used here has been uplodaded to that website, and is also available at
http://www.warwick.ac.uk/go/msteel/steel homepage/software/.

4 This is quite high, given that we only visit one in every 15 million models. Longer chains will capture marginally more
of this posterior probability, but they will only add models with very small posterior probabilities and this will not affect
any of the conclusions.
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FLS on the basis of a chain of the same length.5

Table 2 displays the marginal posterior probabilities of inclusion of each regressor—i.e., P (i).
Fig. 2 displays scatter plots of the logarithms of P (i∩ j), J ?

ij , and Jij for all possible combinations
of two regressors. Fig. 2 shows that log(J ?

ij) and log(Jij) are linearly related for a range of values,
but the relation turns non-linear as P (i ∩ j) → 1. The ranking in terms of both jointness measures
is, however, identical, so the only issue for identifying jointness is to decide on suitable “critical”
values. This will be easier forJij , given its interpretation as a posterior odds ratio. Another notable
feature of Fig. 2 is that both jointness measures tend to be increasing in P (i∩ j). This relationship
is less exact for average values of P (i ∩ j), but it does seem that extremely high and low values of
P (i∩j) correspond to similar extremes for both jointness measures. The main features of Fig. 2 are
closely mirrored by a similar graph for the SDM data set used in the next subsection, thus lending
somewhat more generality to our findings.

Jointness
(All measures in natural logs)
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Fig 2. FLS data: Joint inclusion probabilities, bivariate jointness J ?
ij and Jij .

5 Note that in the applications in this paper, the regressors have been standardized to have (zero mean and) unit variance
to ease the comparison between regression coefficients. The dependent variable is expressed in percentage points of annual
per capita GDP growth and displays similar behaviour in both datasets—means of 2.1 and 1.8, and standard deviations of
1.9 and 1.8.
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Table 2. FLS data: Marginal posterior summary of the β’s.
(Regressors are standardized.)

Conditional on Inclusion
Regressors Prob. E(βi|y)

√
Var(βi|y) |E(βi|y)|√

Var(βi|y) E(βi|y)
√

Var(βi|y) |E(βi|y)|√
Var(βi|y) Sign

1 log GDP in 1960 1.00 -1.4180 0.269 5.3 -1.4180 0.267 5.3 1.0

2 Fraction Confucian 1.00 0.4900 0.117 4.2 0.4922 0.113 4.4 1.0

3 Life expectancy 0.95 0.9574 0.371 2.6 1.0120 0.300 3.4 1.0

4 Equipment investment 0.94 0.5575 0.222 2.5 0.5920 0.179 3.3 1.0

5 Sub-Saharan dummy 0.76 -0.4772 0.334 1.4 -0.6303 0.225 2.8 1.0

6 Fraction Muslim 0.66 0.2565 0.219 1.2 0.3909 0.143 2.7 1.0

7 Rule of law 0.52 0.2594 0.280 0.9 0.5027 0.172 2.9 1.0

8 Number of years open economy 0.50 0.2556 0.283 0.9 0.5088 0.174 2.9 1.0

9 Degree of capitalism 0.47 0.1577 0.184 0.9 0.3347 0.114 2.9 1.0

10 Fraction Protestant 0.46 -0.1441 0.176 0.8 -0.3129 0.120 2.6 1.0

11 Fraction GDP in mining 0.44 0.1384 0.176 0.8 0.3136 0.122 2.6 1.0

12 Non-Equipment investment 0.43 0.1346 0.173 0.8 0.3130 0.116 2.7 1.0

13 Latin American dummy 0.19 -0.0729 0.175 0.4 -0.3829 0.205 1.9 1.0

14 Primary school enrollment, 1960 0.18 0.0941 0.224 0.4 0.5126 0.241 2.1 1.0

15 Fraction Buddhist 0.17 0.0394 0.100 0.4 0.2356 0.114 2.1 1.0

16 Black market premium 0.16 -0.0355 0.092 0.4 -0.2250 0.106 2.1 1.0

17 Fraction Catholic 0.11 -0.0123 0.113 0.1 -0.1118 0.326 0.3 0.7

18 Civil liberties 0.10 -0.0388 0.134 0.3 -0.3879 0.212 1.8 1.0

19 Fraction Hindu 0.10 -0.0247 0.094 0.3 -0.2556 0.182 1.4 1.0

20 Primary exports, 1970 0.07 -0.0209 0.089 0.2 -0.2916 0.178 1.6 1.0

21 Political rights 0.07 -0.0205 0.090 0.2 -0.2994 0.189 1.6 1.0

22 Exchange rate distortions 0.06 -0.0134 0.063 0.2 -0.2202 0.142 1.6 1.0

23 Age 0.06 -0.0098 0.048 0.2 -0.1714 0.110 1.6 1.0

24 War dummy 0.05 -0.0097 0.051 0.2 -0.1886 0.127 1.5 1.0

25 Fraction of Pop. Speaking English 0.05 -0.0071 0.039 0.2 -0.1512 0.104 1.5 1.0

26 Fraction speaking foreign language 0.05 0.0089 0.051 0.2 0.1893 0.146 1.3 0.9

27 Size labor force 0.05 0.0099 0.069 0.1 0.2107 0.240 0.9 0.8

28 Ethnolinguistic fractionalization 0.04 0.0059 0.042 0.1 0.1718 0.154 1.1 1.0

29 Spanish Colony dummy 0.03 0.0058 0.050 0.1 0.1693 0.211 0.8 0.9

30 S.D. of black-market premium 0.03 -0.0041 0.031 0.1 -0.1337 0.117 1.1 1.0

31 French Colony dummy 0.03 0.0042 0.031 0.1 0.1358 0.117 1.2 1.0

32 Absolute latitude 0.02 0.0005 0.040 0.0 0.0212 0.257 0.1 0.5

33 Ratio workers to population 0.02 -0.0030 0.031 0.1 -0.1220 0.158 0.8 0.9

34 Higher education enrollment 0.02 -0.0041 0.039 0.1 -0.1720 0.187 0.9 1.0

35 Population growth 0.02 0.0032 0.035 0.1 0.1513 0.188 0.8 0.9

36 British colony dummy 0.02 -0.0019 0.022 0.1 -0.0913 0.121 0.8 0.9

37 Outward orientation 0.02 -0.0018 0.021 0.1 -0.0865 0.117 0.7 0.9

38 Fraction Jewish 0.02 -0.0014 0.020 0.1 -0.0701 0.127 0.6 0.8

39 Revolutions and coups 0.02 0.0000 0.017 0.0 0.0009 0.136 0.0 0.5

40 Public education share 0.02 0.0004 0.017 0.0 0.0230 0.130 0.2 0.6

41 Area (scale effect) 0.02 -0.0006 0.014 0.0 -0.0427 0.108 0.4 0.8

Fig. 3 displays the log posterior odds, log(Jij), for all the 820 = 41(41−1)/2 pairs of variables.
In the plot, the log Bayes factors, log(Jij), are sorted lexicographically along the horizontal axis,
first by P (i) and then by P (j). Thus, since variable 1 has the highest inclusion probability, all its
pairings appear first. Among those, variable 2 appears first, then 3, etc.

Posterior odds in Fig. 3 are classified as conveying positive, strong, very strong or decisive
evidence of jointness when they exceed 3, 10, 30 or 100, and horizontal lines separate these
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Fig 3. FLS data: Log posterior odds in favor of jointness, log(Jij).

regions.6 Only 8 pairs (1% of the total) display some degree of evidence for jointness. These are
variables 1 and 2 (GDP in 1960 and Fraction Confucian), which show decisive jointness, the pairs
(1, 3), (1, 4), (2, 3), (2, 4) display strong evidence of jointness, while there is positive evidence for
(1, 5), (2, 5), and (3, 4). As was already suggested by Fig. 2, only the regressors with high values
for P (i ∩ j) and thus, high marginal inclusion probabilities tend to appear jointly in the growth
regressions. Both of these probabilities are over 0.75 for the pairs mentioned above, and over 0.93
for those pairs with strong or decisive jointness. This means that we do not have, for this data set,
any regressor pairs that virtually always appear together, while appearing in less than 75% of the
visited models. Fig. 4 summarizes the jointness results graphically. The nodes are proportional to
posterior probabilities of inclusion and the thickness of the joining lines is proportional to log(Jij)
for any pair.

Examining sets of more than two regressors, we note that jointness of all four triplets of the first
four variables is supported by posterior odds of 7 to one and higher, whereas the jointness of all
four of these variables is favorably supported by posterior odds of 7.8. Posterior odds pertaining to
jointness for the first five variables, however, are only 2 to one.

Table 1 shows that the visited models typically have 9 or 10 regressors. This means that models
tend to have five or six regressors in addition to the four or five that are usually present. Since we

6 These cutoff points are easily interpretable—e.g., positive evidence implies the models with both regressors get more
than three times as much posterior probability as those with only one of the regressors. The actual values of the cutoff
points are inspired by Jeffreys (1961, p. 432).
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1. GDP 1960

2. Confucian

3. Life Expectancy 4. Equipment Investment

5. Sub-Saharan

pentagon.nb 1

Fig 4. Pairwise joint growth determinants.
(Nodes and graphs are proportional to posterior probabilities.)

see no jointness beyond the first five variables, these additional regressors have to be alternating.
Evidence suggesting that variables do appear on their own, but not jointly will be denoted by
disjointness. This can occur, e.g., when variables are highly collinear and are proxies for each-
other. We can, again, interpret posterior odds directly, and similar thresholds (now favoring models
with separate inclusion) can be used for disjointness. See Fig. 3 for a graphical display. Table
3 summarizes the posterior odds for assessing disjointness. Now 757 pairs of variables (92.3%
of total) display some degree of disjointness—leaving only 63 pairs with posterior odds, i.e., Jij ,
larger than 1/3. In line with Fig. 2, decisive disjointness occurs only for determinants with small
posterior inclusion probabilities (usually under 5%). The only exception is decisive disjointness
between Civil liberties and Political rights, which are indeed likely to be good substitutes for each
other. For triplets of variables, we get even more evidence of disjointness: 8,752 of the 10,660
possible triplets (i.e., 82.1%) indicate decisive disjointness.

Table 3. Pairwise Disjointness
Evidence posterior odds Number Percentage

Favorable 1
10 < PO ≤ 1

3 79 10.4

Strong 1
30 < PO ≤ 1

10 182 24.0

Very Strong 1
100 < PO ≤ 1

30 353 46.6

Decisive PO ≤ 1
100 143 18.9

Total 757 92.3

In conclusion, the five most important variables (at the top of Table 2) are not mutually exclusive
determinants and tend to appear jointly. This is perhaps not surprising as they seem to capture
rather different explanations for growth. The variables in the data set with moderate marginal
inclusion probabilities do not have strong jointness or disjointness relations (with one exception),
while the variables with least marginal importance tend to avoid occurring jointly and alternate
their presence in the visited models.
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Table 2 also presents the first two moments of the regression coefficients. The first set of
moments is marginalized over all models visited, including the zeros for those models that exclude
the regressor in question. These numbers reveal a strong positive correlation (equal to 0.89) between
the absolute values of the normalized posterior mean and the inclusion probabilities. This ensures
us that there are no variables with high inclusion probability but counteracting effects in different
substantial sets of models. Any serious doubt as to the sign of the effect would be reflected in a
posterior mean close to zero and a large posterior variance. This is reassuring as it implies that
the direction of the influence of variables with high inclusion probabilities tends to be clear. Plots
of the posterior densities of the βi’s can be found in FLS, which shows that the variable “Fraction
Catholic” has modes on different sides of the origin. Indeed, this is the one variable where the
value of the normalized posterior mean is a lot lower than could be expected on the basis of the
(moderate) inclusion probability.

The second set of moments presented in Table 2 are computed conditionally upon inclusion—
i.e., by averaging over only those models which actually include the coefficient in question. These
moments are important for assessing the effect of each regressor, given that it is included in the
model. Clearly, differences with the unconditional moments can be very large if the regressor has
a low or even moderate posterior inclusion probability.

3.2. Application to the Data Set of SDM and DW

SDM, DW and DWa use a larger data set, and model annual GDP growth per capita between 1960
and 1996 for n = 88 countries as a function of k = 67 potential drivers. This leads to an even larger
model space with 267 = 1.5× 1020 models, and requires a slight update to the code used for FLS.
In the Fortran code used in FLS, an unsigned double-precision variable was used to index models
for all the MCMC accounting. This results in an upper limit of 252 models.7 We have updated the
code by using instead two model indices, making it suitable for any k ≤ 104. The revised code is
available at http://www.warwick.ac.uk/go/msteel/steel homepage/software/.

This very large model space is remarkably well explored by an MCMC chain with 2 million
retained model visits, after discarding the first million as a burn-in, as evidenced by a correlation
between model visit frequencies and actual posterior probabilities of the set of visited models equal
to 0.995. The chain visits 126,844 models and is estimated to cover 47% of the total posterior mass.
This is a very high coverage, given that we visit less than one model for every 1015 models in the
space. Any additional models (visited by running longer chains) will have virtually zero posterior
probabilities, and will not affect the conclusions in any way.

Despite the much larger model space, Table 4 shows that posterior model probabilities are more
concentrated than in the previous case and that the models with high posterior probability tend to
be smaller, containing around 6–7 regressors.

7 Double-precision numbers cannot distinguish between 252 and 1+252 because they have the same internal representation.
The 64-bit double format uses 1 bit for the sign and 11 for the exponent leaving 52 bits available for the fraction—thus the
upper limit on ‘counting’ of 252. An additional index will double the upper limit to 2104, which should be enough in most
practical applications.
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Table 4. SDM Data: Distribution of posterior model probability and model size.
(MCMC sampler with 2 million recorded draws after a burn-in of 1 million draws.)

Number Posterior Number of Regressors

of Models Prob. Mean St.Dev.

1 0.07 6 -

5 0.10 6.3 0.5

25 0.18 6.4 0.7

50 0.23 6.3 0.9

100 0.29 6.4 1.0

752 0.50 6.6 1.2

4,627 0.75 6.8 1.3

13,527 0.90 6.9 1.4

21,948 0.90 6.9 1.4

42,363 0.99 7.0 1.4

126,844 1.00 7.0 1.4

Table 5 presents the marginal inclusion probabilities for those regressors that are included more
than 1% of the time8 as well as the moments of the corresponding β’s in the same format as Table
2. Again, note the high correlation between the absolute values of the unconditional standardized
posterior means of the β’s and the posterior inclusion probabilities. There are, however, some
interesting differences with the results based on the FLS data set. In spite of the fact that the
posterior model probability is more concentrated with the SDM data, there are no regressors that
are virtually always included. Nevertheless, fewer regressors have marginal inclusion probabilities
exceeding 10% and there is a longer tail of marginally less important variables (53 out of the
possible 67). In addition, the important determinants of growth are often not the same ones:
only Past GDP, Primary school enrollment, Fraction Confucian, Life expectancy, Fraction GDP in
mining and the Sub-Saharan and Latin American dummies receive inclusion probabilities above
10% for both data sets, and appear in a very different ordering in both. By comparing the moments
of β conditionally upon inclusion, we can assess whether the effects of these regressors are similar
in both datasets.9 Comparing Tables 2 and 5 reveals that they all have the same signs, but some
have rather different magnitudes: the main difference is in the effect of Past GDP, which is almost
twice as large with the FLS data set (the difference is more than 2.5 times the posterior standard
deviation).

The results on posterior inclusion probabilities and posterior moments of β are,10 however,

8 This is merely for ease of presentation, but the sampler was run over the entire model space with 67 potential regressors.

9 These particular regressors were all measured in the same way in both data sets, and the raw moments were very similar,
so that the standardisation does not affect this comparison.

10 For the moments of β this can not be assessed directly from Table 5, but is clear from running the sampler without
standardizing the data.
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Table 5. DW data: Marginal posterior summary of the β’s.
(Regressors are standardized.)

Conditional on Inclusion
Regressors Prob. E(βi|y)

√
Var(βi|y) |E(βi|y)|√

Var(βi|y) E(βi|y)
√

Var(βi|y) |E(βi|y)|√
Var(βi|y) Sign

1 Primary school enrollment, 1960 0.87 0.7080 0.338 2.1 0.8101 0.218 3.7 1.0

2 Investment price 0.86 -0.3900 0.195 2.0 -0.4530 0.125 3.6 1.0

3 East Asian dummy 0.84 0.5647 0.293 1.9 0.6693 0.179 3.7 1.0

4 log GDP in 1960 0.78 -0.5828 0.371 1.6 -0.7444 0.235 3.2 1.0

5 Fraction in tropical area 0.66 -0.4703 0.370 1.3 -0.7180 0.175 4.1 1.0

6 Population coastal density 0.56 0.2516 0.246 1.0 0.4527 0.135 3.4 1.0

7 Malaria prevalence 0.20 -0.1411 0.302 0.5 -0.6950 0.256 2.7 1.0

8 Fraction Confucian 0.17 0.0725 0.176 0.4 0.4326 0.168 2.6 1.0

9 Life expectancy 0.16 0.1556 0.390 0.4 0.9554 0.415 2.3 1.0

10 Sub-Saharan dummy 0.15 -0.1068 0.282 0.4 -0.7277 0.300 2.4 1.0

11 Latin American dummy 0.14 -0.0832 0.219 0.4 -0.5825 0.214 2.7 1.0

12 Spanish colony dummy 0.11 -0.0454 0.143 0.3 -0.4216 0.173 2.4 1.0

13 Fraction GDP in mining 0.10 0.0305 0.102 0.3 0.3023 0.147 2.1 1.0

14 Ethnolinguistic fractionalization 0.10 -0.0331 0.111 0.3 -0.3316 0.155 2.1 1.0

15 Fraction Buddhist 0.09 0.0315 0.112 0.3 0.3505 0.167 2.1 1.0

16 Fraction Muslim 0.09 0.0319 0.116 0.3 0.3705 0.178 2.1 1.0

17 Population density 0.08 0.0201 0.077 0.3 0.2535 0.122 2.1 1.0

18 Government consumption share 0.08 -0.0231 0.092 0.3 -0.3078 0.157 2.0 1.0

19 Number of years open economy 0.07 0.0286 0.115 0.2 0.3851 0.198 1.9 1.0

20 Political rights 0.07 -0.0278 0.115 0.2 -0.3966 0.204 1.9 1.0

21 Fraction speaking foreign language 0.06 0.0156 0.073 0.2 0.2762 0.150 1.8 1.0

22 Openness measure 1965–74 0.05 0.0148 0.075 0.2 0.2989 0.165 1.8 1.0

23 Real exchange rate distortions 0.05 -0.0142 0.075 0.2 -0.3038 0.176 1.7 1.0

24 Higher education enrollment 0.05 -0.0158 0.084 0.2 -0.3545 0.191 1.9 1.0

25 Government share of GDP 0.04 -0.0115 0.063 0.2 -0.2578 0.159 1.6 1.0

26 Public investment share 0.04 -0.0115 0.063 0.2 -0.2709 0.155 1.7 1.0

27 Air distance to big cities 0.04 -0.0096 0.057 0.2 -0.2583 0.150 1.7 1.0

28 Primary exports 0.03 -0.0090 0.063 0.1 -0.3144 0.208 1.5 1.0

29 Fraction population under 15 0.03 0.0091 0.069 0.1 0.3383 0.259 1.3 1.0

30 Fraction population in tropics 0.03 -0.0101 0.072 0.1 -0.3673 0.242 1.5 1.0

31 Fraction Protestant 0.02 -0.0072 0.060 0.1 -0.3064 0.242 1.3 1.0

32 Fraction Hindu 0.02 0.0048 0.038 0.1 0.2047 0.146 1.4 1.0

33 Nominal Government share 0.02 -0.0032 0.030 0.1 -0.1760 0.141 1.2 1.0

34 Outward orientation 0.02 -0.0030 0.027 0.1 -0.1611 0.122 1.3 1.0

35 Revolutions and coups 0.02 -0.0026 0.026 0.1 -0.1570 0.128 1.2 1.0

36 Civil liberties 0.02 -0.0039 0.042 0.1 -0.2438 0.231 1.1 1.0

37 Fertility 0.02 -0.0049 0.061 0.1 -0.3021 0.379 0.8 0.9

38 Colony dummy 0.02 -0.0029 0.032 0.1 -0.1924 0.177 1.1 1.0

39 European dummy 0.01 -0.0004 0.047 0.0 -0.0315 0.397 0.1 0.5

40 Absolute latitude 0.01 0.0021 0.050 0.0 0.1583 0.402 0.4 0.6

41 Hydrocarbon deposits 0.01 0.0018 0.023 0.1 0.1378 0.152 0.9 0.9

42 Fraction Catholic 0.01 -0.0035 0.048 0.1 -0.2790 0.329 0.8 0.9

43 British colony dummy 0.01 0.0017 0.022 0.1 0.1406 0.152 0.9 1.0

44 Religion measure 0.01 -0.0013 0.018 0.1 -0.1137 0.123 0.9 1.0

45 Average inflation 1960–90 0.01 -0.0014 0.018 0.1 -0.1209 0.122 1.0 1.0

46 Landlocked country dummy 0.01 -0.0011 0.018 0.1 -0.1072 0.138 0.8 0.9

47 Terms of trade growth in 1960s 0.01 0.0012 0.019 0.1 0.1174 0.150 0.8 0.9

48 Defense spending share 0.01 0.0013 0.020 0.1 0.1238 0.150 0.8 1.0

49 Square of inflation 1960—90 0.01 -0.0010 0.016 0.1 -0.1037 0.121 0.9 1.0

50 Fraction of population over 65 0.01 0.0005 0.032 0.0 0.0493 0.313 0.2 0.6

51 Public education spending share 0.01 0.0011 0.018 0.1 0.1156 0.146 0.8 1.0
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quite close to those in SDM, which are replicated in DW and DWa. It is, therefore, interesting
to compare our findings on jointness with those in DW, based on their criterion JDW

ij in (3) and
those in DWa, based on JDWa

ij in (4). We do not find much evidence of jointness (see Fig. 5),
with only pairs (1, 2) and (2, 4) displaying posterior odds in favor of jointness greater than 3.
Weak jointness (with posterior odds over 2.5) exists for pairs (1, 3), (1, 4), (2, 3), (3, 5) and (5, 6).
No jointness is found for triplets, with 2.2 being the highest posterior odds in favor of trivariate
jointness, corresponding to the triplet (1,2,4). In contrast, evidence for disjointness abounds, with
99.1% of possible pairs indicating some disjointness and 70% displaying decisive disjointness.
Such disjointness is found almost exclusively between relatively unimportant regressors. There is
only one occasion of decisive disjointness between two variables each having over 10% marginal
inclusion probability: the Latin American and Spanish colony dummies. Clearly, these dummies
are likely to be substitutes, given the large amount of former Spanish colonies in Latin America. If
we consider triplets of variables, we even find decisive disjointness in 98.2% of all combinations.
Again, this tends to affect mostly combinations with relatively unimportant variables. Exceptions
are the triplets (Fraction in tropical area, Malaria prevalence, Life expectancy) and (Fraction in
tropical area, Malaria prevalence, Sub-Saharan dummy), where it is clear not all three variables
involved are required to provide the information. We do, however, need two of them, since the
variables are not found to be decisively pairwise disjoint.
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Fig 5. DW Data: Log posterior odds in favor of jointness, log(Jij).

In sharp contrast, DW and DWa find disjointness only between variables with more than 10%
inclusion probabilities. However, they both identify the disjointness between the Latin American
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and Spanish colony dummies. They find pairwise disjointness between the Fraction tropical area
and Malaria prevalence and between the Sub-Saharan dummy and Malaria prevalence (whereas we
found this disjointness to exist only through the triplet). In addition, none of the jointness relations
we find are identified by the DW criterion. Of course, finding conclusive evidence of jointness
in the sense of DW in cases where the inclusion probability of one of the variables exceeds 0.37
is precluded by the very definition of JDW

ij , as explained in Section 2. The criterion in DWa
identified jointness in four of the seven pairs in which we encountered at least weak jointness.
However, two of the three remaining pairs (East Asian dummy with the investment price and with
primary school enrollment) are labelled significantly disjoint according to JDWa

ij . As the three
variables involved are the ones with highest posterior inclusion probabilities, this may be related to
the potentially erratic behaviour ofJDWa

ij for important regressors, as discussed in Section 2. Both
the measures of DW and especially that of DWa indicate many bivariate jointness links beyond
those found through Jij . All this clearly shows that the DW and DWa jointness measures provide
very different summaries of the posterior distribution than the measure introduced here.

4. Concluding Remarks

Growth regressions are affected by uncertainty regarding which regressors to include from a set
of k potential covariates, where k could be quite large (k = 41 and k = 67 in our applications).
Bayesian Model Averaging is an effective and intuitive way of dealing with this problem and leads
to a k-dimensional posterior distribution for the vector of regression coefficients β, which consists
of a mixture of continuous distributions and point masses in each dimension. Summarizing such a
posterior distribution beyond the information contained in these marginals is quite challenging and
requires well-honed tools for extracting relevant pieces of information. It is important that these
tools provide us additional insight into properties of the posterior that are particularly interesting
for both researchers and policymakers, and that they are easy to interpret. We argue that our
jointness measure proposed in (8) satisfies both criteria: it addresses relevant questions and is
directly interpretable as the posterior odds ratio between models that include a set of variables and
models that include only proper subsets. In addition, it is naturally defined for any set of regressors
and is not restricted to bivariate jointness evaluations (between variables or sets of variables).

We applied this jointness measure to two data sets used for growth regressions in the recent
literature. In both data sets we encounter jointness only between important determinants of
growth. The regressors involved are complements in that each of them has a separate role to play in
explaining growth. Much more frequently, we encounter situations of disjointness, where regressors
are substitutes and really should not appear together in interesting growth models. However, the
regressors displaying disjointness relationships tend to be fairly unimportant drivers of growth.
When we consider triplets rather than pairs of variables, these conclusion are strengthened in that
we find even less jointness and more disjointness. However, even then decisive disjointness is
mostly confined to variables with relatively small posterior inclusion probabilities.

Thus, the data sets analysed here seem to contain a few key growth determinants that have a
clearly defined and separated role to play, and should, thus, occur jointly in growth regressions,
while a substantial fraction of the regressors is of relatively small importance and captures effects
that can also be accounted for by other regressors. In between we have a number of variables
with typically moderate explanatory power and no clear jointness or disjointness relationships. It
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is perhaps mostly due to this latter group that model uncertainty is such an important feature of
growth regression.

We hope the simple jointness measure introduced here can provide a useful tool for further
exploration of the posterior distribution in problems involving Bayesian variable selection. In
particular, we hope it may contribute to our understanding of the growth of countries or regions.
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