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Abstract. In contrast to a posterior analysis given a particular sampling model, posterior
model probabilities in the context of model uncertainty are typically rather sensitive to the
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We focus on the Normal linear regression model with uncertainty in the choice of re-
gressors. We propose a partly noninformative prior structure related to a Natural Conjugate
g-prior specification, where the amount of subjective information requested from the user is
limited to the choice of a single scalar hyperparameter g0j . The consequences of different
choices for g0j are examined. We investigate theoretical properties, such as consistency of
the implied Bayesian procedure. Links with classical information criteria are provided. In
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study. The use of the MC3 algorithm of Madigan and York (1995), combined with efficient
coding in Fortran, makes it feasible to conduct large simulations. In addition to posterior
criteria, we shall also compare the predictive performance of different priors. A classic exam-
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the literature. The main findings of the paper will lead us to propose a “benchmark” prior
specification in a linear regression context with model uncertainty.
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The issue of variable selection has permeated the econometrics and statistics literature for decades. An
enormous volume of references can be cited (only a fraction of which is mentioned in this paper), and special
issues of the Journal of Econometrics (1981, Vol.16, No.1) and Statistica Sinica (1997, Vol.7, No.2) are merely
two examples of the amount of interest the topic of model selection has generated in the literature.

Indeed, the issue is an important one, as we are often faced with a situation where a large number of
possible regressors can be used and we do not wish to dilute the (often scant) data information we have by
including too many regressors. Bayesian methods provide us with a perfectly coherent and interpretable
solution, both for selecting and for combining models, through posterior odds. Unfortunately, the influence
of the prior distribution, which is often straightforward to assess for inference given the model, is much
harder to identify for posterior model probabilities.

Broadly speaking, we can distinguish three strands of related literature in this context. Firstly, we
mention the fundamentally oriented statistics and econometrics literature on prior elicitation and model
selection, such as exemplified in Box (1980), Zellner and Siow (1980), Draper (1995) and Phillips (1995) and
the discussions of these papers. Secondly, there is the recent statistics literature on computational aspects.
Markov chain Monte Carlo methods are proposed in George and McCulloch (1993), Green (1995), Madigan
and York (1995), Geweke (1996) and Raftery, Madigan and Hoeting (1997), while Laplace approximations
are found in Gelfand and Dey (1995) and Raftery (1996). Finally, there exists a large literature on information
criteria, mostly in the context of time series, see e.g. Hannan and Quinn (1979), Akaike (1981), Atkinson
(1981), Chow (1981). This paper provides a unifying framework in which these three areas of research will
be discussed.

In line with the bulk of the literature, the context of this paper will be that of Normal linear regression
with uncertainty in the choice of regressors. We present a prior structure that can reasonably be used in
cases where we have (or wish to use) little prior information, partly based on improper priors for parameters
that are common to all models, and partly on a g-prior structure as in Zellner (1986). The prior is not in the
natural-conjugate class, but is such that marginal likelihoods can still be computed analytically. This allows
for a simple treatment of potentially very large model spaces through Markov chain Monte Carlo model
composition (MC3) as introduced in Madigan and York (1995). In contrast to some of the priors proposed in
the literature, the prior we propose does not violate the rules of probability as it avoids dependence on the
values of the response variable. The only hyperparameter left to elicit in our prior is a scalar g0j . Theoretical
properties, such as consistency of posterior model probabilities, are linked to functional dependencies of g0j

on sample size and the number of regressors in the model considered. In addition, we conduct an empirical
investigation through simulation. This will allow us to suggest specific choices for g0j to the applied user.

As we have conducted a large simulation study, efficient coding was required. This code (in Fortran-77)
has been made publicly available on the World Wide Web, and will allow researchers in various (applied)
fields to use MC3 techniques on large empirically relevant problems at very modest computing costs. In
addition, we present the researcher with a simple diagnostic to assess whether the sampler that generates
a Monte Carlo Markov chain over model space has converged.

Section 1 introduces the Bayesian model and the practice of Bayesian model averaging. The prior structure
is explained in detail in Section 2, where expressions for Bayes factors are also given. Asymptotic consistency
of the latter is studied in Section 3. The setup of the empirical simulation experiment is described in Section
4, while results are provided in the next section. An illustrative example using the economic model of crime
from Ehrlich (1973, 1975) concludes the paper.

1. THE MODEL AND BAYESIAN MODEL AVERAGING

We consider n independent replications from a linear regression model with an intercept, say α, and k
possible regression coefficients grouped in a k-dimensional vector β. We denote by Z the corresponding
n× k design matrix and we assume that r(ιn : Z) = k + 1, where ιn is an n-dimensional vector of 1’s.

C. Fernández gratefully acknowledges financial support from a Training and Mobility of Researchers grant awarded by the
European Commission (ERBFMBICT # 961021). C. Fernández and M.F.J. Steel were affiliated to CentER and the Department of
Econometrics, Tilburg University, The Netherlands during the early stages of the work on this paper.
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This gives rise to 2k possible sampling models, depending on whether we include or exclude each of the
regressors. A model Mj , j = 1, . . . , 2k, consists of a choice of 0 ≤ kj ≤ k regressors and leads to

y = αιn + Zjβj + σε, (1.1)

where y ∈ <n is the vector of observations. In (1.1), Zj denotes the n × kj submatrix of Z of relevant
regressors, βj ∈ <kj groups the corresponding regression coefficients and σ ∈ <+ is a scale parameter.
Furthermore, we shall assume that ε follows an n-dimensional Normal distribution with zero mean and
identity covariance matrix.

We now need to specify a prior distribution for the parameters inMj , namelyα, βj andσ. This distribution
will be given through a density function

p(α, βj , σ | Mj). (1.2)

In Section 2, we shall consider specific choices for the density in (1.2) and examine the resulting Bayes
factors. In order to complete the prior distribution of the parameters under model Mj , we group the
irrelevant components of β underMj in a vector β∼j ∈ <k−kj . The latter vector follows a Dirac distribution
at zero, i.e.

Pβ∼j |α,βj ,σ,Mj
= Pβ∼j |Mj

= Dirac at (0, . . . , 0). (1.3)

We denote the space of all 2k possible models byM, thus

M = {Mj : j = 1, . . . , 2k}. (1.4)

In a Bayesian framework, dealing with model uncertainty is, theoretically, perfectly straightforward: we
simply need to put a prior distribution over the model spaceM

P (Mj) = pj , j = 1, . . . , 2k, with pj > 0 and
2k∑
j=1

pj = 1. (1.5)

The Bayesian model is then specified in three consecutive steps:

(1) Through (1.1) we define the distribution of the observables given model Mj and the parameters α, β
and σ.

(2) In (1.2)-(1.3) we specify the distribution of the parameters α, β and σ given Mj .

(3) Finally, (1.5) gives the prior probabilities of each of the models.

With this setup, the posterior distribution of any quantity of interest, say ∆, is a mixture of the posterior
distributions of that quantity under each of the models with mixing probabilities given by the posterior
model probabilities. Thus

P∆ | y =
2k∑
j=1

P∆ | y,Mj
P (Mj | y). (1.6)

This procedure, which is typically referred to as Bayesian model averaging (BMA), is in fact the standard
Bayesian procedure under model uncertainty, since it follows directly from the rules of probability calculus
upon which the Bayesian paradigm is based [see e.g. Leamer (1978), Min and Zellner (1993), Osiewalski and
Steel (1993) and Raftery et al. (1997)].

Posterior model probabilities are given by

P (Mj | y) =
ly(Mj)P (Mj)∑2k

h=1 ly(Mh)P (Mh)
=

 2k∑
h=1

P (Mh)
P (Mj)

ly(Mh)
ly(Mj)

−1

, (1.7)

where ly(Mj), the marginal likelihood of model Mj , is obtained as

ly(Mj) =
∫
p(y | α, βj , σ,Mj)p(α, βj , σ | Mj)dαdβjdσ, (1.8)
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with p(y | α, βj , σ,Mj) and p(α, βj , σ | Mj) defined through (1.1) and (1.2), respectively.

Two difficult questions here are how to compute P (Mj | y) and how to assess the influence of our prior
assumptions on the latter quantity. In cases where ly(Mj) can be derived analytically, the computation of
P (Mj | y) is reasonably straightforward applying the MC3 methodology of Madigan and York (1995). This
is a Metropolis algorithm [see e.g. Chib and Greenberg (1995)], which allows us to generate drawings from
a Markov chain on the model spaceM with the posterior model distribution as its stationary distribution.
The latter is easily implemented if combined with the choice of a natural conjugate prior structure [see
e.g. Raftery et al. (1997)]. For more complex prior structures that do not allow for an explicit expression for
ly(Mj), the reversible jump methodology of Green (1995) could be applied. An alternative approach was
proposed by George and McCulloch (1993, 1997), who do not formally impose zero restrictions as in (1.3),
but constrain these coefficients to be concentrated around zero instead (in this way, they get around the
problem of a parameter space of varying dimension).

On the other hand, the issue of choosing a “sensible” prior distribution seems further from being resolved.
From (1.7) it is clear that the value of P (Mj | y) is determined by the prior odds [P (Mh)/P (Mj)] and the
Bayes factors [Bhj ≡ ly(Mh)/ly(Mj)] of each of the entertained models versusMj . Bayes factors are known
to be rather sensitive to the choice of the prior distributions for the parameters within each model. Even
asymptotically, the influence of this distribution does not vanish [see e.g. Kass and Raftery (1995) and George
(1997)]. Thus, under little (or under absence of) prior information, the choice of the distribution in (1.2) is a
very thorny question. Furthermore, the usual recourse to improper “noninformative” priors does not work
in this situation, since the rules of probability no longer apply if we use improper priors on model-specific
parameters. Most of the priors that have been proposed in the literature violate the rules of probability
calculus, since they are either improper on model-specific parameters [attempts to overcome this are e.g.
intrinsic Bayes factors as in Berger and Pericchi (1996) or fractional Bayes factors as in O’Hagan (1995)] or
are data-dependent through the response variable [as the prior in e.g. Raftery et al. (1997)]. Here, we will
focus on priors that do not have these undesirable properties and are thus, in our view, more suitable for
a Bayesian analysis. To this end, we shall propose certain priors and study their behaviour in comparison
with other priors previously considered in the literature [e.g. in Bernardo (1980) and Laud and Ibrahim
(1995, 1996)].

2. PRIORS FOR MODEL PARAMETERS AND THE CORRESPONDING BAYES FACTORS

In this section, we present several priors [i.e. several choices for the density in (1.2)] and derive the
expressions of the resulting Bayes factors. In the next sections, we examine the properties (both finite-
sample and asymptotic) of the Bayes factors.

2.1. A natural conjugate framework

Both for reasons of computational simplicity and for the interpretability of theoretical results, the most
obvious choice for the prior distribution of the parameters is a natural conjugate one. The density in (1.2)
is then given through

p(α, βj | σ,Mj) = f
kj+1
N ((α, βj) | m0j , σ

2V0j), (2.1)

which denotes the p.d.f. of a (kj + 1)-variate Normal distribution with mean m0j and covariance matrix
σ2V0j , and through

p(σ−2 | Mj) = p(σ−2) = fG(σ−2 | c0, d0), (2.2)

which corresponds to a Gamma distribution with mean c0/d0 and variance c0/d2
0 for σ−2. Note that we have

assumed a common prior distribution for σ across models. Clearly m0j ∈ <kj+1, V0j a (kj + 1) × (kj + 1)
PDS matrix, c0 > 0 and d0 > 0 are prior hyperparameters that still need to be elicited.

This natural conjugate framework greatly facilitates the computation of posterior distributions and Bayes
factors. In particular, the marginal likelihood of model Mj computed through (1.8) takes the form

ly(Mj) = fnS

(
y | 2c0, Xjm0j ,

c0
d0

(In −XjV∗jX
′
j)
)
, (2.3)

where
Xj = (ιn : Zj), (2.4)

V∗j = (X ′jXj + V −1
0j )−1, (2.5)
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and fnS (y | ν, b, A) denotes the p.d.f. of an n-variate Student-t distribution with ν degrees of freedom,
location vector b (the mean if ν > 1) and precision matrixA (with covariance matrixA−1ν/(ν− 2) provided
ν > 2) evaluated at y. The Bayes factor for model Mj versus model Ms now takes the form

Bjs =
ly(Mj)
ly(Ms)

=
( |V∗j |
|V0j |

|V0s|
|V∗s|

)1/2
{

2d0 + (y −Xsm0s)′(In −XsV∗sX ′s)(y −Xsm0s)
2d0 + (y −Xjm0j)′(In −XjV∗jX ′j)(y −Xjm0j)

}c0+n
2

. (2.6)

Generally, the choice of the prior hyperparameters in (2.1)-(2.2) is not a trivial one. The user is plagued
by the pitfalls described in Richard (1973), arising if we wish to combine a fixed quantity of subjective
prior information on the regression coefficients with little prior information on σ. Richard and Steel (1988,
App. D) and Bauwens (1991) propose a subjective elicitation procedure for the precision parameter based
on the expected fit of the model. See Poirier (1996) for related ideas. In this paper we shall follow the
opposite strategy, and instead of trying to elicit more prior information in a situation of incomplete prior
specification, we focus on situations where we have (or wish to use) as little subjective prior knowledge as
possible.

2.2. Choosing prior hyperparameters for (α, βj)

Choosing m0j and V0j can be quite difficult in the absence of prior information. A predictive way of
eliciting m0j is through making a prior guess for the n-dimensional response y. Laud and Ibrahim (1996)
propose to make such a guess, call it η, taking the information on all the covariates into account and
subsequently choose m0j = (X ′jXj)−1X ′jη. Our approach is similar in spirit but much simpler: Given
that we do not possess a lot of prior information, we consider it very difficult to make a prior guess for n
observations taking the covariates for each of these n observations into account. Especially when n is large,
this seems like an extremely demanding task. Instead, one could hope to have an idea of the central values
of y and make the following prior prediction guess: η = m1ιn, which corresponds to

m0j = (m1, 0, . . . , 0)′. (2.7)

Eliciting prior correlations is even more difficult. We adopt the popular and convenient g-prior [Zellner
(1986)], which corresponds to taking

V −1
0j = g0jX

′
jXj , (2.8)

with g0j > 0. From (2.5) it is clear that V −1
0j is the prior counterpart of X ′jXj . This choice is extremely

popular, and has been considered, among others by Poirier (1985) and Laud and Ibrahim (1995, 1996). See
also Smith and Spiegelhalter (1980) for a closely related idea.

With these hyperparameter choices, the Bayes factor in (2.6) can be written in the following intuitively
interpretable way

Bjs =
(

g0j

g0j + 1

) kj+1
2
(
g0s + 1
g0s

) ks+1
2
(

2d0 + 1
g0s+1y

′MXsy + g0s
g0s+1 (y −m1ιn)′(y −m1ιn)

2d0 + 1
g0j+1y

′MXjy + g0j
g0j+1 (y −m1ιn)′(y −m1ιn)

)c0+n
2

, (2.9)

where
y′MXjy = y′y − y′Xj(X ′jXj)−1X ′jy (2.10)

is the usual Sum of Squared Residuals under model Mj .

Note that the last factor in (2.9) contains a convex combination between the model “lack of fit” (measured
through y′MXjy) and the “error of our prior prediction guess” [measured through (y −m1ιn)′(y −m1ιn)].
The coefficients of this convex combination are determined by the choice of g0j . The choice of g0j is crucial
for obtaining sensible results, as we shall see later. By not choosing g0j through fixing a marginal prior of
the regression coefficients, we avoid the natural conjugate pitfall mentioned at the end of Subsection 2.1. In
addition, the g-prior in (2.8) can also lead to a prior that is continuously induced across models [see Poirier
(1985)] in the sense that the priors for all J models can be derived as the relevant conditionals from the prior
of the full model (with kj = k). This will hold as long as g0j does not depend on Mj .

2.3. A non-informative prior for σ

From (2.9) it is clear that the choice of d0, the precision parameter in the Gamma prior distribution for σ−2,
can crucially affect the Bayes factor. In particular, if the value of d0 is large in relation to the values of y′MXjy
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and (y −m1ιn)′(y −m1ιn) the prior will dominate the sample information, which is a rather undesirable
property. The impact of d0 on the Bayes factor also clearly depends on the units of measurement for the
data y. In the absence of (or under little) prior information, it is very difficult to choose this hyperparameter
value without using the data if we do not want to risk choosing it too large. Even using prior ideas about fit
does not help; Poirier (1996) shows that the population analog of the coefficient of determination (R2) does
not have any prior dependence on c0 or d0. Use of the information in the response variable was proposed
e.g. by Raftery (1996) and Raftery et al. (1997) but, as we already mentioned, this takes us outside the rules
of probability and we prefer to avoid this situation. Instead we propose the following:

Since the scale parameter σ appears in all the models entertained, we can use the improper prior distri-
bution with density

p(σ) ∝ σ−1, (2.11)

which is the widely accepted non-informative prior distribution for scale parameters. It is easy to check
that this improper prior leads to a proper posterior (and thus allows for a Bayesian analysis) as long as
y 6= m1ιn. The distribution in (2.11) is the only one that is invariant under scale transformations (induced
by e.g. a change in the units of measurement) and is the limiting distribution of the Gamma conjugate prior
in (2.2) when both d0 and c0 tend to zero. This leads to the Bayes factor

Bjs =
(

g0j

g0j + 1

) kj+1
2
(
g0s + 1
g0s

) ks+1
2
(

1
g0s+1y

′MXsy + g0s
g0s+1 (y −m1ιn)′(y −m1ιn)

1
g0j+1y

′MXjy + g0j
g0j+1 (y −m1ιn)′(y −m1ιn)

)n
2

, (2.12)

where we have avoided the influence of the hyperparameter values c0 and d0.

2.4. A non-informative prior for the intercept

In (2.12) there are two subjective elements that still remain, namely the choices of g0j and of m1, where
m1ιn is our prior guess for y. It is clear from (2.12) that the choice of m1 can have a non-negligible impact
on the actual Bayes factor and, under absence of prior information, it is extremely difficult to successfully
elicit m1 without using the data. The idea that we propose here is very much in line with our solution for
the prior on σ: since all the models have an intercept, take the usual non-informative improper prior for a
location parameter with constant density. This avoids the difficult issue of choosing a value for m1.

This setup takes us outside the natural conjugate framework, since our prior for (α, βj) no longer corre-
sponds to (2.1). Without loss of generality, we assume that

ι′nZ = 0, (2.13)

so that the intercept is orthogonal to all the regressors. This is immediately achieved by substracting the
corresponding mean from each of them. Such a transformation only affects the interpretation of the intercept
α, which is typically not of primary interest. In addition, the prior that we next propose for α is not affected
by this transformation. We now consider the following prior density for (α, βj):

p(α) ∝ 1, (2.14)

p(βj | σ,Mj) = f
kj
N (βj | 0, σ2(g0jZ

′
jZj)

−1). (2.15)

Through (2.14) − (2.15) we assume the same prior distribution for α in all of the models and a g-prior
distribution for βj under model Mj . We again use the non-informative prior described in (2.11) for σ.
Existence of a proper posterior distribution is now achieved as long as the sample contains at least two
different observations. The Bayes factor for Mj versus Ms now is

Bjs =
(

g0j

g0j + 1

)kj/2(g0s + 1
g0s

)ks/2( 1
g0s+1y

′MXsy + g0s
g0s+1 (y − yιn)′(y − yιn)

1
g0j+1y

′MXjy + g0j
g0j+1 (y − yιn)′(y − yιn)

)(n−1)/2

, (2.16)

if kj ≥ 1 and ks ≥ 1. If one of the latter two quantities, e.g. kj , is zero (which corresponds to the model with
just the intercept), the Bayes factor is simply obtained as the limit of Bjs in (2.16) letting g0j tend to infinity.

Note the similarity between the expression in (2.16) and (2.12), where we had adopted a (limiting) natural
conjugate framework. When we are non-informative on the intercept [see (2.16)] we lose, as it were, one
observation (n becomes n − 1) and one regressor (kj + 1 becomes kj). But the most important difference
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is that our subjective prior guess m1 is now replaced by y, which is eminently reasonable and avoids the
sensitivity problems alluded to before. Thus, we shall, henceforth, favour the prior given by the product of
(2.11), (2.14) and (2.15).

3. ASYMPTOTIC PROPERTIES AND THE CHOICE OF g0j

Following our comment at the end of Section 2, the remainder of the paper will focus on the prior given
through (2.11), (2.14) and (2.15), which leads to the expression in (2.16) for the Bayes factor. We note that
in (2.16) only g0j remains to be determined. This will be done using a number of properties of the Bayes
factor and the posterior model probabilities. In particular, we would like to have consistency (i.e. assuming
that one of the entertained models is the correct one, we would want the posterior probability of the correct
model to converge to one as sample size increases). In addition, we also want sensible behaviour for finite
sample sizes, both in terms of posterior model probabilities and predictive ability. In this section we shall
focus on large sample results, whereas Section 4 will deal with finite-sample properties through a simulation
experiment.

Throughout this section we assume that the sample y is generated by model Ms ∈ M with parameter
values α, βs and σ, i.e.

y = αιn + Zsβs + σε. (3.1)

We aim at achieving consistency in the sense that

plim
n→∞

P (Ms | y) = 1 and plim
n→∞

P (Mj | y) = 0 for all Mj 6= Ms, (3.2)

where the probability limit is taken with respect to the true sampling distribution described in (3.1). By
(1.7), as long as the prior (1.5) on the model space does not depend on sample size, we simply need to
check that the Bayes factor for model Mj versus model Ms, Bjs, converges in probability to zero for any
model Mj other than Ms. The reference posterior odds proposed in Bernardo (1980) and Pericchi (1984)
rely on making prior model probabilities depend on the expected gain in information from the sample. As
explained in these papers, such procedures will generally not lead to consistency in the sense of (3.2).

Although we shall focus on the case of improper priors on α and σ, thus leading to the expression forBjs
in (2.16), it is immediate to see that the same results apply to the Bayes factor in (2.9) (which corresponds
to proper priors on both α and σ) and to the Bayes factor in (2.12) (where we are still proper on α).

The appendix will group some derivations underlying the results in this section. We shall assume
throughout that condition (A.2) in the appendix holds. We examine two different functional choices for g0j .
Let us first consider dependence on the sample size n and, possibly, on the number of regressors kj .

3.1. Results under g0j = w1(kj)
w2(n) with limn→∞ w2(n) =∞

This is a rather logical choice for g0j in view of the prior in (2.15), which assumes that the prior precision
is a fraction g0j of the sample precision. Thus, it seems natural to impose that as sample size increases, the
precision of the prior becomes a smaller fraction of that of the sample and vanishes as n goes to infinity. In
addition, we let g0j depend on a function w1 of kj . The following theorem summarizes our results:

Theorem 1. Consider the Bayesian model given by (1.1), together with the prior densities in (2.11), (2.14),
(2.15) and any prior on the model space M in (1.5). We assume that g0j in (2.15) takes the form

g0j =
w1(kj)
w2(n)

with lim
n→∞

w2(n) =∞. (3.3)

Then, under the assumption that there is a true model Ms in M that generates the data, the condition

lim
n→∞

w′2(n)
w2(n)

= 0, (3.4)

together with either

lim
n→∞

n

w2(n)
∈ [0,∞) (3.5)

or
w1(·) is a nondecreasing function, (3.6)
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ensures that the posterior distribution of the models is consistent in the sense defined in (3.2).

On the basis of prior ideas about fit, Poirier (1996) suggests taking w2(n) = n, which satisfies (3.4) and
(3.5) and thus leads to consistent Bayes factors. This and other choices will be discussed subsequently.

The proof of Theorem 1 (see appendix) never makes use of the Normality assumption for the error
distribution of the ‘true’ model in (3.1), and, thus, our findings immediately generalize to the case where
the components of ε in (3.1) are i.i.d. following any regular distribution with finite variance. Therefore, even
if the true model does not possess a Normally distributed error term, the posterior distribution derived on
the basis of the models with Normality assumed [leading to the Bayes factor in (2.16)] is still consistent,
in the sense of asymptotically selecting the true subset of regressors, under the sufficient conditions for g0j

stated in Theorem 1. This implies that we can always make the convenient assumption of Normality to
asymptotically select the correct set of regressors. In some sense, this offers a counterpart to the classical
result for testing nested models, where the Likelihood Ratio, Wald and Rao (or Lagrange multiplier) statistics
derived under the assumption of Normality keep the same asymptotic distribution (a χ2) even if the error
term is non-Normal [see e.g. Amemiya (1985, p. 144)].

3.2. Results with g0j = w(kj)

We now examine the situation where g0j is no longer a function of the sample size n. Therefore, consis-
tency is entirely driven by the last factor of Bjs in (2.16), which we denote by Djs.

It is immediately clear that in this situation we do not have consistency: When the data generating
model, Ms, is the model with just the intercept, Djs ≥ 1 regardless of the data [since the numerator in the
last factor of (2.16) is then (y − yιn)′(y − yιn), which is always bigger than or equal to the denominator].
Thus, P (Ms | y) can not converge to one as n tends to infinity, precluding consistency.

Even though we do not have consistency, let us examine the asymptotic behaviour of Djs for the case
where Ms contains some regressors other than the intercept (i.e. ks ≥ 1). See the appendix for proofs.

When Ms is nested within Mj , we have the following result:

plim
n→∞

Djs = 0 if and only if w(·) is an increasing function. (3.7)

The situation becomes less clear-cut when Ms is not nested within Mj . We can show that Djs converges
to zero when Mj is the model with just the intercept. In addition, taking w(·) to be an increasing function,
is sufficient if ks ≤ kj , but we can not assure this if ks > kj ≥ 1 (this will be case-specific). Thus, we can not
exclude that models smaller than the true one asymptotically receive positive posterior probability.

On the other hand, if we take w(kj) to be a constant, we obtain a zero limit for Djs if Ms is not nested
within Mj . However, in this situation models that nest the true model asymptotically receive positive
probability, as follows from (3.7).

3.3. Relationship to information criteria

A number of information criteria have traditionally been used for classical model selection purposes,
especially in the area of time series analysis. In this subsection, we shall establish asymptotic links between
the Bayes factors corresponding to Subsection 3.1 and two consistent information criteria: the Schwarz (or
Bayes information) criterion as derived in Schwarz (1978) and the Hannan-Quinn criterion of Hannan and
Quinn (1979). If we wish to compare two models as in (1.1), say Mj versus Ms, these criteria take the form:

Sjs =
n

2
ln
(
y′MXsy

y′MXjy

)
+
ks − kj

2
ln(n), (3.8)

HQjs =
n

2
ln
(
y′MXsy

y′MXjy

)
+
ks − kj

2
CHQ ln ln(n). (3.9)

Hannan and Quinn (1979) prove strong consistency for both criteria provided CHQ > 2.

The asymptotic behaviour of the Bayes factor in (2.16), made consistent by choosing g0j as in Theorem 1,
can be characterized by the following result:
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Theorem 2. Consider the Bayesian model described in Theorem 1, with g0j verifying (3.4) together with
either (3.5) or (3.6). Then the Bayes factor in (2.16) satisfies:

plim
lnBjs

n
2 ln

(
y′MXsy
y′MXj

y

)
+ ks−kj

2 lnw2(n)
= 1, (3.10)

where the probability limit is taken with respect to the model Ms as described in (3.1).

Thus, different choices of the function w2(n) will influence the asymptotic behaviour of the logarithm of
the Bayes factor. In particular, let us consider the choices of w2(n) that induce a relationship with the two
information criteria mentioned above.

Corollary 1. If in Theorem 2 we choose w2(n) = n, we obtain

plim
lnBjs
Sjs

= 1, (3.11)

whereas choosing w2(n) = {ln(n)}CHQ and w1(·) nondecreasing, leads to

plim
lnBjs
HQjs

= 1. (3.12)

From these results we see that lnBjs behaves like these consistent criteria if we choosew2(n) appropriately.
Note that the second choice of w2(n) in Corollary 1 does not verify (3.5), which is why we impose that
w1(·) fulfills (3.6). Kass and Wasserman (1995) study the relationship between the Schwarz criterion and
Bayes factors using “unit information priors” for testing nested hypotheses, and provide the order of the
approximation under certain regularity conditions.

As a final note, it is again worth mentioning that Theorem 2 also holds if the error terms in (3.1) follow a
non-Normal distribution.

4. THE SIMULATION EXPERIMENT

4.1. Introduction

In this section we perform a simulation experiment to assess the performance of different choices of g0j

in finite sampling. In addition to Bayes factors, we will compute posterior model probabilities and evaluate
predictive ability under several choices of g0j . Our results in this section will be derived under a Uniform
prior on the model spaceM. Thus, the Bayesian model will be given through (1.1), together with the prior
densities in (2.11), (2.14) and (2.15), and

P (Mj) = pj = 2−k, j = 1, . . . , k. (4.1)

Creating the design matrix of the simulation experiment follows Example 5.2.2 in Raftery et al. (1997). We
generate an n× k (k = 15) matrix R of regressors in the following way: the first ten columns in R, denoted
by (r(1), . . . , r(10)) are drawn from independent standard Normal distributions, and the next five columns
(r(11), . . . , r(15)) are constructed from

(r(11), . . . , r(15)) = (r(1), . . . , r(5))(.3 .5 .7 .9 1.1)′(1 1 1 1 1) + E (4.2)

where E is an n× 5 matrix of independent standard Normal deviates. Note that (4.2) induces a correlation
between the first five regressors and the last five regressors. The latter takes the form of small to moderate
correlations between r(i), i = 1, . . . , 5, and r(11), . . . , r(15) (the theoretical correlation coefficients increase
from 0.153 to 0.561 with i) and somewhat larger correlations between the last five regressors (theoretical
values 0.740). Curiously, this correlation structure differs from the one reported in Raftery et al. (1997),
which seems in conflict with (4.2). After generating R, we demean each of the regressors, thus leading to a
matrix Z = (z(1), . . . , z(15)) that fulfills (2.13).

A vector of n observations is then generated according to one of the models

Model 1 : y = 4 + 2z(1) − z(5) + 1.5z(7) + z(11) + 0.5z(13) + u, (4.3)
Model 2 : y = 1 + u, (4.4)

where the elements of u are independently Normally distributed with mean zero and variance σ2 = 6.25.
Whereas Model 1 is meant to capture a more or less realistic situation where one third of the regressors
intervene, Model 2 is an extreme case without any relationship between predictors and response. A “null
model” similar to the latter was analysed in Freedman (1983) using a classical approach and in Raftery et
al. (1997) through Bayesian model averaging.
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4.2. Choices for g0j

Based on the theory in Section 3, we shall consider seven different choices for g0j . From Theorem 1,
priors a-f all lead to consistency, in the sense of asymptotically selecting the correct model. In addition,
from Corollary 1, the log of Bayes factors obtained under priors a-c behave asymptotically like the Schwarz
criterion, whereas those obtained under priors e and f respectively behave like the Hannan-Quinn criterion
with CHQ = 3 and CHQ = 1. Prior d provides an intermediate case in terms of asymptotic penalty for large
models.

Prior a: g0j = 1
n

This prior roughly corresponds to assigning the same amount of information to the conditional prior of
β as is contained in one observation. Thus, it is in the spirit of the “unit information priors” of Kass and
Wasserman (1995) and the g-prior (using a Cauchy prior on β given σ) used in Zellner and Siow (1980).
In addition, this choice of g0j does not depend on j and, thus, implies continuously induced priors across
models, in the sense of Poirier (1985).

Prior b: g0j = kj
n

Here we assign more information to the prior as we have more regressors in the model, i.e. we expect the
sample information to be more diluted as the number of regressors grows.

Prior c: g0j = k1/kj

n

Now prior information decreases with the number of regressors in the model.

Prior d: g0j =
√

kj
n

This is an intermediate case, where we choose w2(n) = n1/2, and we have a smaller asymptotic penalty
term for large models than in the Schwarz criterion [see (3.8)].

Prior e: g0j = 1
(lnn)3

Here we choosew2(n) so as to mimic the Hannan-Quinn criterion in (3.9) withCHQ = 3 as n becomes large.
This prior is also continuously induced across models.

Prior f: g0j = ln(kj+1)
lnn

Now w2(n) increases even slower with sample size and we have asymptotic convergence of lnBjs to HQjs
for CHQ = 1.

Prior g: g0j = δγ1/kj

1−δγ1/kj

This choice was suggested by Laud and Ibrahim (1996), who use a natural conjugate prior structure, sub-
jectively elicited through predictive implications. In applications, they propose to choose γ and δ such that
g0j/(1 + g0j) ∈ [0.10, 0.15] (the weight of the “prior prediction error” in our Bayes factors); for k = 15 this
implies: γ = 0.64889, δ = 0.15411. Note that this prior choice does not lead to consistency if the data are
generated from a model with only the intercept, the “null model” in (4.4) (see Subsection 3.2). If γ < 1
then g0j is an increasing function of kj , and following Subsection 3.2 we know that plimn→∞Bjs = 0 when
ks ≥ 1 and Mj is either the null model or kj ≥ ks. In cases when 1 ≤ kj < ks it depends on (A.9) whether
Bjs converges to zero or not.

4.3. Predictive criteria

Clearly, if we generate the data from some known model, we are interested in recovering that model with
the highest possible posterior probability for each given sample size n. However, in practical situations
with real data, we might be more interested in predicting the observable, rather than uncovering some
“true” underlying structure. This is more in line with the Bayesian way of thinking, where models are mere
“windows” through which to view the world [see Poirier (1988)], but have no inherent meaning in terms
of characteristics of the real world. See also Dawid (1984) and Geisser and Eddy (1979).

Forecasting is conducted conditionally upon the regressors, so we will generate q k-dimensional vectors
zf , f = 1, . . . , q, given which we will predict the observable y. In empirical applications, zf will typically

9



    

be constructed from some original value rf of which we substract the mean of the raw regressors R in the
sample on which inference is based. This ensures that the interpretation of the regression coefficients in
posterior and predictive inference is compatible.

In this subsection, it will prove useful to explicit the conditioning on the regressors in zf and Z in
the notation. In accordance with the expression in (1.6), the out-of-sample predictive distribution for
f = 1, . . . , q will be characterized by

p(yf | zf , y, Z) =
J∑
j=1

f1
S(yf | n− 1, y +

1
g0j + 1

z′f,jβ
∗
j ,

n− 1
d∗j
{1 +

1
n

+
1

g0j + 1
z′f,j(Z

′
jZj)

−1zf,j}−1)P (Mj | y, Z),

(4.5)

where y is based on the inference sample y = (y1, . . . , yn)′, zf,j groups the j elements of zf corresponding
to the regressors in Mj , β∗j = (Z ′jZj)

−1Z ′jy and

d∗j =
1

g0j + 1
y′MXjy +

g0j

g0j + 1
(y − yιn)′(y − yιn) (4.6)

The term in (4.5) corresponding to the model with only the intercept is obtained by letting the corresponding
g0j tend to infinity.

The log predictive score is a proper scoring rule introduced by Good (1952). Some of its properties are
discussed in Dawid (1986). This is the first predictive criterion we will compute. For each value of zf we
shall generate a number, say v, of responses from the underlying true model [(4.3) or (4.4)] and base our
predictive measure on (4.5) evaluated in these out-of-sample observations yf1, . . . , yfv , namely:

LPS(zf , y, Z) = −1
v

v∑
i=1

ln p(yfi | zf , y, Z), (4.7)

It is clear that a smaller value of LPS(zf , y, Z) makes a Bayes model (thus, in our context, a prior choice for
g0j) preferable. Madigan, Gavrin and Raftery (1995) give an interpretation for differences in log predictive
scores in terms of one toss with a biased coin.

More formally, the criterion in (4.7) can be interpreted as an approximation to the expected loss with
a logarithmic rule, which is linked to the well-known Kullback-Leibler criterion. The Kullback-Leibler
divergence between the actual sampling density p(yf | zf ) in (4.3) or (4.4) and the out-of-sample predictive
density in (4.5) can be written as

KL{p(yf | zf ), p(yf | zf , y, Z)} =
∫
<
{ln p(yf | zf )}p(yf | zf )dyf−∫
<
{ln p(yf | zf , y, Z)}p(yf | zf )dyf ,

(4.8)

where the first integral is the negative entropy of the sampling density, and the second integral can be
seen as a theoretical counterpart of (4.7) for a given value of zf . This latter integral can easily be shown
to be finite in our particular context and is now approximated by averaging over v values for yfi given a
particular vector of regressors zf . For the Normal sampling model used here, the negative entropy is given
by − 1

2{ln(2πσ2) + 1} = −2.335 for our choice of σ in (4.3), regardless of zf . By the nonnegativity of the
Kullback-Leibler divergence, this constitutes a lower bound for LPS(zf , y, Z) of 2.335.

We now have a measure of predictive performance, LPS(zf , y, Z), for each zf , f = 1, . . . , q. We can, of
course, immediately assess the distribution of this quantity as zf varies, through its empirical distribution
corresponding to all q generated values of zf .

Finally, we can investigate the calibration of the predictive and compare the entire predictive density
function in (4.5) with the known sampling distribution of the response in (4.3) or (4.4) given a particular
(fixed) set of regressor variables. The fact that such predictions are, by the very nature of our regression
model, conditional upon the regressors does complicate matters slightly. We can not simply compare the
sampling density averaged over different values of zf with the averaged predictive density function. It
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is clearly crucial to identify predictives with the value of zf they condition on. Predicting correctly “on
average” can mask arbitrarily large errors in conditional predictions, as long as they compensate each other.
We shall graphically present comparisons of the sampling density and the predictive density for three key
values of zf within our sample of q predictors: the one leading to the smallest mean of the sampling model
in (4.3), the one leading to the median value and the one giving rise to the largest value. For the sampling
model in (4.4), the value of zf does not intervene, so here we shall just present a graph of the predictive for
one (randomly chosen) value zf (the sampling model now does not change with zf , but the predictive does,
as long as we assign nonzero probability to models larger than the null model). In addition, we shall present
properties of LPS and the predictive coverage averaged over the different values of zf as well. These latter
measures of predictive performance naturally compare each predictive with the corresponding sampling
distribution (i.e. taking the value of zf into account), so that an overall measure can readily be computed.

5. FINITE SAMPLE SIMULATION RESULTS

5.1 Convergence and implementation

The implementation of the simulation study described in the previous section will be conducted through
the MC3 methodology mentioned in Section 1. This Metropolis algorithm generates a new candidate
model, say Mj , from a Uniform distribution over the subset of M consisting of the current state of the
chain, say Ms, and all models containing one regressor more or less than Ms. The chain moves to Mj

with probability min(1, Bjs), where Bjs is the Bayes factor in (2.16). In order to evaluate the posterior
model probabilities we can simply count the relative frequencies of model visits in the Markov chain. A
somewhat more interesting alternative to this strategy is to use the actual Bayes factors, already computed
in running the chain, to compare all visited models. Since the number of visited models is typically a
small subset of the total number of possible models, this method is feasible. Lee (1996) introduces this idea
as Bayesian Random Search (BARS). The generated chain is then effectively only used to indicate which
models should be considered in computing Bayes factors. All other (non-visited) models will implicitly
be assumed to have zero posterior probability. This has two advantages: firstly, it is clearly more precise
than relative frequencies, since the Bayes factors in (2.16) are exact and don’t require any ergodic properties.
Secondly, comparing empirical relative frequencies with exact Bayes factors will give a good indication of
the convergence of the chain. We shall report results based on Bayes factors, but we ran the chain for long
enough to get almost the same answers with empirical model frequencies. This resulted in Markov Chain
Monte Carlo with 50,000 recorded drawings after a burn-in of 20,000 drawings. A useful diagnostic to assess
convergence of the Markov chain is the correlation coefficient of the exact Bayes factors computed through
(2.16) and the relative frequencies of model visits.

In order to avoid results depending on the particular sample analyzed, we have generated 100 indepen-
dent samples (y, Z) according to the setup described in Section 4. Frequently, results will be presented in
the form of either means and standard deviations or quantiles computed over these 100 samples. Sample
sizes used in the simulation will be n = 50, 100, 1000, 10,000 and 100,000. Furthermore, we generate q = 19
different vectors of regressors zf for the forecasts of Model 1, whereas q = 5 for Model 2. For each of these
values of the vector zf , v = 100 out-of-sample observations will be generated.

As such a simulation study is quite CPU demanding, we put a good deal of emphasis on efficient
coding and speed of execution. We coded in standard Fortran 77, and we used stacks to store information
pertaining evaluated models in order to reduce the number of calculations. The entire simulation was run
on one single 120MHz 604 PowerPC-based desktop computer. On a PowerMacintosh 7600, each 20,000–
50,000 chain would take an average (over priors) time in seconds of: 209, 58, 5, 18, and 117; for n = 50, 100,
1000, 10,000 and 100,000. The source code is posted at http://econwpa.wustl.edu and it is freely available.

5.2 Posterior model inference

Section 3 contains some results concerning the asymptotic behaviour of our Bayesian analysis as the
number of observations n goes to infinity. Here we summarize the main results for various finite values of
n.

5.2.1. Results under Model 1

One of the main indicators of the performance of the Bayesian methodology is the posterior probability
assigned to the model that has generated the data. Ideally, one would want this probability to be very
high for small or moderate values of n that are likely to occur in practice. Table 1 presents the means and
standard deviations across the 100 samples of (y, Z) for the posterior probability of the true model (Model 1).
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Columns correspond to the five sample sizes used and rows order the different priors a through g introduced
in Subsection 4.2. In order to put these results in a better perspective, note that the prior model probability of
each of the 215 possible models is equal and amounts to 3.052 ·10−5. We know from the theoretical results in
Subsection 3.1 that priors a-f are consistent in the sense of (3.2). From Subsection 3.2, we remain inconclusive
about consistency under prior g, since we cannot exclude that models with less regressors than the true
one receive, asymptotically, positive posterior probability. However, our simulation results will suggest
that consistency holds in our particular example. It is clear from Table 1 that the posterior probability of
Model 1 varies greatly in finite samples. Whereas prior d already performs very well for n = 1000, getting
average probabilities of the correct model upwards of 0.97, prior e only obtains a probability of 0.60 with
a sample as large as 100,000. Apart from the absolute probability of the correct model, it is also important
to examine how much posterior weight is assigned to Model 1 relative to other models. Therefore, Table
2 presents quartiles of the ratio between the posterior probability of the correct model and the highest
posterior probability of any other model. It is clear that in most cases this ratio tends to be far above unity,
which is reassuring as it tells us that the most favoured model will still be the correct one, even though it
may not have a lot of posterior mass attached to it. For example, with n = 50 prior f only leads to a mean
posterior probability of Model 1 of 0.002 but still favours the correct model to the next best. In fact, the
correct model is always favoured in at least 75 of the 100 samples, even for small sample sizes. Note that
this compares favourably to results in George and McCulloch (1993).

Table 1. Model 1: Means and Stds of the posterior probability of the true model.
n 50 100 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std

a 0.0128 0.0197 0.0575 0.0618 0.5293 0.1401 0.8111 0.0928 0.9254 0.0760

b 0.0066 0.0091 0.0332 0.0338 0.4407 0.1373 0.7601 0.1064 0.9048 0.0841

c 0.0110 0.0159 0.0519 0.0533 0.4860 0.1374 0.7853 0.0999 0.9145 0.0804

d 0.0029 0.0026 0.0205 0.0188 0.9730 0.0196 1.0000 0.0000 1.0000 0.0000

e 0.0141 0.0223 0.0586 0.0616 0.3610 0.1251 0.5139 0.1327 0.5981 0.1327

f 0.0020 0.0014 0.0128 0.0107 0.7762 0.3421 1.0000 0.0000 1.0000 0.0000

g 0.0026 0.0026 0.0069 0.0056 0.2773 0.0864 1.0000 0.0000 1.0000 0.0000

Table 2. Model 1: Quartiles of ratio of posterior probabilities; True Model vs Best among the rest.
n 50 100 1000 10,000 100,000

Prior Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

a 1.5 3.2 6.3 3.0 5.8 8.6 9.1 19.0 29.8 27.6 67.8 90.5 79.0 193.4 285.5

b 1.1 2.6 4.2 2.2 4.1 6.2 9.6 16.6 22.1 16.6 36.3 66.3 59.7 113.4 194.7

c 1.2 3.4 5.8 2.0 5.1 8.3 7.0 13.8 22.9 26.3 55.9 73.6 62.3 135.6 236.1

d 1.6 2.7 3.5 1.9 3.8 5.8 226.5 416.4 629.4 ∞ ∞ ∞ ∞ ∞ ∞
e 1.7 4.0 7.0 2.0 4.4 8.7 4.7 9.2 16.5 9.7 19.7 24.9 12.7 22.2 34.2

f 1.4 2.3 3.3 1.4 3.9 5.1 11.4 238.7 3625.8 ∞ ∞ ∞ ∞ ∞ ∞
g 1.2 2.3 2.8 1.9 2.8 3.9 5.9 10.6 12.9 ∞ ∞ ∞ ∞ ∞ ∞

Table 3. Model 1: Means and Stds of Number of Models Visited.
n 50 100 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std

a 2230 637 1123 290 134 29 49 11 20 5

b 4478 1347 1994 615 206 46 66 16 25 7

c 2475 711 1252 317 148 32 53 11 21 5

d 7159 1549 2810 838 15 4 1 0 1 0

e 2056 596 1158 301 237 47 151 37 110 24

f 8677 1608 3555 1204 3 1 1 0 1 0

g 5480 1353 3322 809 654 89 1 0 1 0

Table 3 records means and standard deviations of the number of visited models in the 50,000 recorded
drawings of the chain in model space. Given that the model that generated the data is one of the 215 = 32, 768
possible models examined, we would want this to be as small as possible. For n = 50 it is clear that the
sample information is rather weak, allowing the chain to wander around and visit many models: as much
as around a quarter of the total amount of models for prior f, and never less than six percent on average
(Prior a). The sampler visits less models as n increases, and for n = 1000 we already have very few visited
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models for priors f in particular and also for d. When 10,000 observations are available, that is enough to
make the sampler stick to one model (the correct one) for priors d, f and g. Surprisingly, whereas prior g still
leads to very erratic behaviour of the sampler with n = 1000, it never fails to put all the mass on the correct
model for the larger sample sizes. Finally, note that even with 100,000 observations, prior e still makes the
sampler visit almost 110 models on average.

Table 4. Model 1: Means and Stds of Posterior Probabilities of Including each regressor.
n = 50

Prior a b c d e f g

Reg. Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

→1 0.98 0.07 0.98 0.07 0.98 0.06 0.97 0.09 0.98 0.07 0.96 0.09 0.98 0.06

2 0.22 0.17 0.29 0.14 0.24 0.16 0.33 0.10 0.21 0.17 0.35 0.09 0.36 0.13

3 0.25 0.18 0.31 0.14 0.27 0.17 0.35 0.11 0.24 0.18 0.37 0.10 0.38 0.13

4 0.27 0.19 0.33 0.15 0.28 0.18 0.37 0.11 0.25 0.19 0.39 0.10 0.40 0.13

→ 5 0.42 0.27 0.44 0.22 0.43 0.26 0.43 0.15 0.40 0.27 0.43 0.13 0.50 0.19

6 0.22 0.16 0.28 0.13 0.24 0.16 0.32 0.09 0.21 0.15 0.34 0.08 0.35 0.13

→7 0.94 0.14 0.94 0.13 0.94 0.14 0.90 0.15 0.94 0.15 0.87 0.15 0.94 0.12

8 0.22 0.16 0.29 0.14 0.24 0.15 0.32 0.10 0.21 0.15 0.34 0.08 0.36 0.13

9 0.21 0.14 0.28 0.12 0.23 0.15 0.32 0.08 0.20 0.14 0.34 0.07 0.35 0.11

10 0.21 0.14 0.28 0.12 0.23 0.14 0.32 0.08 0.20 0.13 0.34 0.07 0.35 0.11

→11 0.82 0.25 0.81 0.22 0.82 0.24 0.76 0.19 0.81 0.25 0.74 0.18 0.82 0.20

12 0.24 0.19 0.30 0.15 0.26 0.19 0.34 0.11 0.23 0.19 0.36 0.09 0.37 0.14

→13 0.39 0.27 0.43 0.23 0.40 0.26 0.44 0.18 0.38 0.27 0.45 0.15 0.49 0.20

14 0.27 0.22 0.32 0.19 0.28 0.21 0.36 0.13 0.25 0.22 0.37 0.11 0.39 0.16

15 0.22 0.15 0.28 0.12 0.23 0.15 0.33 0.08 0.21 0.15 0.35 0.07 0.36 0.11

n = 1000

Prior a b c d e f g

Reg. Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

→1 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

2 0.07 0.11 0.09 0.12 0.08 0.12 0.00 0.01 0.11 0.13 0.00 0.00 0.16 0.10

3 0.06 0.08 0.08 0.08 0.07 0.08 0.00 0.01 0.09 0.09 0.00 0.00 0.15 0.07

4 0.05 0.06 0.07 0.07 0.06 0.07 0.00 0.01 0.08 0.08 0.00 0.00 0.14 0.06

→ 5 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.88 0.26 1.00 0.00

6 0.07 0.08 0.09 0.09 0.07 0.08 0.00 0.00 0.10 0.10 0.00 0.00 0.16 0.08

→7 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

8 0.06 0.07 0.08 0.08 0.07 0.08 0.00 0.00 0.10 0.10 0.00 0.00 0.15 0.08

9 0.06 0.06 0.08 0.08 0.07 0.07 0.00 0.00 0.10 0.09 0.00 0.00 0.15 0.07

10 0.06 0.07 0.08 0.08 0.07 0.07 0.00 0.00 0.10 0.09 0.00 0.00 0.15 0.07

→11 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

12 0.06 0.10 0.08 0.10 0.06 0.10 0.00 0.01 0.09 0.10 0.00 0.00 0.15 0.09

→13 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.78 0.34 1.00 0.00

14 0.05 0.04 0.07 0.05 0.06 0.04 0.00 0.00 0.08 0.06 0.00 0.00 0.14 0.05

15 0.06 0.07 0.07 0.08 0.06 0.07 0.00 0.00 0.09 0.09 0.00 0.00 0.14 0.07

Table 4 indicates in what sense the different Bayesian models tend to err if they assign posterior probability
to alternative sampling models. In particular, Table 4 presents the means and standard deviations of
the posterior probabilities of including each of the regressors. As we know from (4.9), Model 1 contains
regressors 1,5,7,11 and 13 (indicated with arrows in Table 4). To save space, we shall only report this for
n = 50 and n = 1000. When n = 50, regressors z(1) and z(7) are almost always included. Since they are
(almost) orthogonal to the other regressors, and their regression coefficients are rather large in absolute
value, this is not surprising. Regressor z11 is only correlated with z13 and is still often included. The
most difficult are regressors 5 and 13, which are positively correlated, and have relatively small regression
coefficients of opposite signs. The posterior probabilities of including regressors not contained in the correct
model is relatively small. What is not clearly exemplified by Table 4 is that priors a through f tend to choose
alternatives that are nested by Model 1 for small sample sizes, whereas prior g puts considerable posterior
mass on models that nest the correct sampling model. Table 4 informs us that for n = 1000 the correct
regressors are virtually always included. Only prior f has a tendency to choose models that are nested by
Model 1. For the other priors there remain small probabilities of incorrectly including extra regressors (the
smallest for prior d and the largest for prior g). Alternative models tend to nest the correct model for all
priors, except prior f, with this and larger sample sizes.

5.2.2. Results under Model 2

Let us now briefly present the results when the data are generated according to Model 2 in (4.4), the null
model. Table 5 presents means and standard deviations of the posterior probability of the null model. It is
clear that this is not an easy task and most priors lead to small probabilities of selecting the correct model.
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Overall, priors a and e do best for small sample sizes, whereas larger sample sizes are most favourable
to priors a and b. Despite these rather small probabilities of the null model, the latter is still typically
favoured over the second best model. This is evidenced by Table 6, where the three quartiles of the ratio of
the posterior probabilities of Model 2 and the best other model are presented. Only prior f leads to a first
quartile below unity. Overall, priors a and b seem to do best on this criterion. The difficulty of pinning
down the correct (null) model can also be inferred from Table 7, where means and standard deviations of
the number of visited models are presented. It is clear that some priors (like b, d, f and g) make the chain
wander a lot for small sample sizes. Priors f and g retain this problematic behaviour even for sample sizes
as large as 100,000. Interestingly, whereas prior f leads to (very slow) improvements as n increases, the bad
behaviour with prior g seems entirely unaffected by sample size. Of course, we know from the theory in
Subsection 3.2 that prior g does not lead to consistent Bayes factors in this case. The number of models
visited is relatively small for prior a, which seems to emerge as the winner from the posterior results under
Model 2.

Table 5. Model 2: Means and Stds of the posterior probability of the true model.
n 50 100 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std

a 0.0320 0.0269 0.0722 0.0494 0.3812 0.1543 0.7199 0.1346 0.8995 0.0529

b 0.0021 0.0028 0.0114 0.0124 0.2606 0.1506 0.6910 0.1441 0.8960 0.0568

c 0.0099 0.0081 0.0238 0.0157 0.1494 0.0715 0.4148 0.1201 0.7080 0.1009

d 0.0003 0.0003 0.0006 0.0006 0.0066 0.0066 0.0427 0.0300 0.1570 0.0938

e 0.0407 0.0322 0.0764 0.0492 0.2216 0.1050 0.3569 0.1220 0.4733 0.1235

f 0.0001 0.0002 0.0002 0.0002 0.0005 0.0006 0.0009 0.0008 0.0014 0.0015

g 0.0010 0.0012 0.0011 0.0012 0.0014 0.0014 0.0013 0.0011 0.0014 0.0014

Table 6. Model 2: Quartiles of ratio of posterior probabilities; True Model vs Best among the rest.
n 50 100 1000 10,000 100,000

Prior Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

a 2.4 4.4 7.0 3.1 6.2 9.2 6.0 16.1 24.8 30.0 60.0 86.2 78.7 202.4 272.1

b 2.1 5.2 7.0 3.7 6.7 9.7 7.4 22.1 28.9 18.4 45.7 79.6 64.1 153.8 253.2

c 1.3 1.8 2.1 1.2 2.2 2.7 2.0 4.1 7.1 6.3 15.2 21.8 16.1 40.3 70.2

d 1.1 2.1 2.8 1.2 2.5 3.2 2.2 3.9 5.2 3.1 6.6 9.4 6.1 11.2 16.7

e 2.4 5.3 7.5 3.5 6.8 9.3 4.9 11.4 17.5 8.1 15.7 25.3 12.9 26.9 36.2

f 0.5 1.5 2.6 0.6 1.6 2.6 0.9 2.3 3.2 1.3 2.6 3.5 1.8 3.4 4.2

g 1.2 2.3 3.2 1.3 2.5 3.2 1.3 2.7 3.2 1.7 2.7 3.5 1.6 2.5 3.1

Table 7. Model 2: Means and Stds of Number of Models Visited.
n 50 100 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std

a 3921 937 2213 737 445 149 116 27 37 10

b 14482 2379 11651 1589 1813 817 245 90 54 17

c 4183 781 2496 523 513 163 159 28 60 12

d 16869 2221 15784 2097 10251 2022 4852 1576 1960 690

e 3529 729 2396 539 948 279 513 127 329 79

f 17994 2105 17601 2133 16381 1879 14963 3065 13364 3671

g 12587 1561 12580 1483 12653 1353 12532 2201 12413 2205

In summary, the posterior results for Model 1 point towards prior d as the best choice for most practical
purposes, whereas prior a seems preferable for small samples and when the null model has generated the
data.

5.3. Predictive inference

5.3.1. Results under Model 1

As discussed in Subsection 4.3 we shall condition our predictions on values of the regressors zf . In all,
we choose q = 19 different vectors for these regressors, and we shall focus especially on those vectors that
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lead to the minimum, median and maximum value for the mean of the sampling model. We shall denote
these regressors as zmin, zmed and zmax, respectively. In our particular case, zmin will be more extreme than
zmax.

Table 8. Model 1: Conditional Medians of LPS(zf , y, Z).
n 50 100 1000 10,000 100,000

zmin zmed zmax zmin zmed zmax zmin zmed zmax zmin zmed zmax zmin zmed zmax
a 2.471 2.425 2.428 2.391 2.389 2.391 2.334 2.355 2.348 2.326 2.325 2.338 2.331 2.350 2.345

b 2.480 2.422 2.431 2.409 2.390 2.385 2.334 2.355 2.347 2.326 2.325 2.338 2.331 2.350 2.345

c 2.471 2.424 2.433 2.397 2.389 2.389 2.334 2.355 2.347 2.326 2.325 2.338 2.331 2.350 2.345

d 2.691 2.448 2.475 2.507 2.406 2.410 2.358 2.356 2.354 2.333 2.326 2.338 2.332 2.351 2.345

e 2.474 2.428 2.428 2.393 2.389 2.391 2.333 2.355 2.347 2.326 2.325 2.338 2.331 2.350 2.345

f 2.836 2.470 2.530 2.636 2.423 2.463 2.475 2.378 2.412 2.440 2.355 2.385 2.417 2.362 2.379

g 2.492 2.430 2.440 2.450 2.392 2.395 2.418 2.362 2.381 2.419 2.349 2.374 2.422 2.364 2.382

Firstly, Table 8 presents the median of LPS(zf , y, Z) as computed in (4.7) across the 100 samples (y, Z),
conditionally upon the three vectors of regressors mentioned above. In interpreting these numbers, it is
useful to recall that the theoretical minimum of the integral corresponding to LPS is 2.335, as explained
in Subsection 4.3. Of course, LPS in (4.7) is only a Monte Carlo approximation to this integral (based on
a mere 100 drawings), so this lower bound is not always strictly adhered to. Under priors a through e we
are predicting the sampling density virtually exactly with samples of size n = 1000 or more. Of these five
priors, prior d performs slightly worse for very small samples (in particular, for the zf corresponding to the
minimum sampling mean). Priors f and g tend to be further from the actual sampling density and do not
lead to perfect prediction even with 100,000 observations. Prior f, in particular, leads to rather large values
for LPS when n is 1000 or smaller and conditionally upon zmin.

zmin zmed zmax

a

d

f

g

n = 50

Fig. 1. Model 1: Predictive densities, n = 50.

In order to find out more about the differences between the predictive density in (4.5) and the sampling
density in (4.3), we can overplot both densities for the three values of zmin, zmed and zmax. Figures 1 and 2
display this comparison for different values of n and the predictives for 25 of the 100 generated samples (to
avoid cluttering the graphs). The dark line corresponds to the actual sampling density. Since the predictives
from priors a-c and e are very close for all sample sizes, we shall only present the graphs for priors a, d, f
and g. It is clear that for n = 50 substantial uncertainty remains about the predictive distribution: different
samples can lead to rather different predictives. They are, however fairly well calibrated in that they tend
to lie on both sides of the actual sampling density for priors a, b, c and e and there is no clear tendency
towards a different degree of concentration. These are exactly the priors for which g0j takes on fairly small
values (in between 0.02 and 0.08). The priors d, f and g lead to much larger values for g0j (in the range 0.16
to 0.41) and show a clear tendency for the predictive densities to be somewhat biased towards the median
when conditioning on zmin and zmax. In addition, these priors induce predictives that are, on average,
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zmin zmed zmax zmin zmed zmax

a

d

f

g

n = 100 n = 1000

a

d

f

g

n = 10,000 n = 100,000

Fig. 2. Model 1: Predictive densities, n = 100, 1000, 10,000, and 100,000.

less concentrated than the sampling density. This behaviour can easily be understood once we realize that
the locations of each of the components in (4.5) (the posterior mean of α + z′fβ under each of the models
considered) are clearly shrunk more towards the sample mean ȳ as g0j becomes larger. This is, of course,
in accordance with the zero prior mean for βj and the g-prior structure in (2.15). In addition, predictive
precision decreases with g0j , which explains the systematic excess spread of the predictives with respect to
the sampling density for priors d, f and g. As sample size increases, the predictive distributions get closer
and closer to the actual sampling distribution, and for n = 1000 or larger the effect of shrinkage due to g0j

has become negligible for prior d (g0j is then equal to 0.06) whereas it persists for priors f and g even with
100,000 observations (where g0j takes the values 0.14 and 0.16, respectively).

Table 9. Model 1: Medians of LPS(zf , y, Z).

n 50 100 1000 10,000 100,000

a 2.427 2.382 2.339 2.334 2.333

b 2.427 2.383 2.339 2.334 2.333

c 2.424 2.381 2.339 2.334 2.333

d 2.473 2.416 2.347 2.335 2.334

e 2.428 2.382 2.339 2.334 2.333

f 2.502 2.452 2.393 2.375 2.363

g 2.433 2.452 2.369 2.366 2.366

We can also compare overall predictive performance, through considering LPS(zf , y, Z) for the 19 dif-
ferent values of zf and the 100 samples of (y, Z). This leads to the results presented in Table 9, where the
medians (computed across the 1900 sample-zf combinations) are recorded for the different priors and sam-
ple sizes. Clearly, whereas all priors except for prior f (and, to a lesser extent, prior d) lead to comparable
predictive behaviour for very small n, the fact that g0j is constant in n makes prior g lose ground with
respect to the other priors as n increases. Prior f always performs worse than priors a through e. Note that
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priors a through e lead to median LPS values that are roughly equal to the theoretical minimum of 2.335,
implying perfectly accurate prediction, for n ≥ 1000.

Alternatively, we can compare the percentiles of the sampling distribution and the predictive in (4.5).
We compute the predictive percentiles corresponding to the 1st, 5th, 25th, 50th, 75th, 95th, and 99th sampling
percentile. The quartiles of these numbers, calculated over all 1900 sample-zf combinations, are presented
in Table 10. This confirms that priors a-c and e lead to better predictions for small sample sizes, where
the predictives from d,f and g are too spread out. Starting at n = 1000, prior d predicts well, whereas the
inaccurate predictions with priors f and g persist even for very large sample sizes. Comparing Figure 2 with
Table 10, it is clear that most of the spread in the percentiles for priors f and g with n ≥ 10, 000 is due to the
bias toward the median (shrinkage). Remember that Table 10 averages over the 19 different values of zf .

5.3.2. Results under Model 2

As mentioned in Subsection 5.2.2, it is very hard to correctly identify the null model when we generate
the data from such a model. On the other hand, prediction seems much easier than model choice. This can
immediately be deduced from Table 10, where predictive percentiles are compared with the actual sampling
percentiles. Clearly, the incorrectly chosen models are such that they do not lead our predictions (averaged
over all the chosen models as in (4.5)) far astray. Table 10 contains predictive percentiles for n = 50 and
1000, and even with just 50 observations median predictions are virtually exact, and the spread around
these values is relatively small. Moreover, this behaviour is encountered for all priors. When sample size
is up to 1000, prediction is near perfect for all priors.

Summarizing the predictive performance, we can state the following. For Model 1 priors a, b, c, and e
(which induce the smallest values for g0j) seem to do best, but for 1000 or more observations, prior d does
just as well. All these priors predict virtually exactly for n = 1000 or more. Priors f and g imply too much
shrinkage, as a result of large values for g0j (in the case of prior g, this value does not depend on n at all), and
thus do worse in prediction. In the case of Model 2 (the null model), prediction is virtually perfect under
all priors, even with small samples. For this model the issue of shrinkage is, of course, less problematic.

6. AN EMPIRICAL EXAMPLE: CRIME DATA

The literature on the economics of crime has been critically influenced by the seminal work of Becker
(1968) and the empirical analysis of Ehrlich (1973, 1975). The underlying idea is that criminal activities are
the outcome of some rational economic decision process, and, as a result, the probability of punishment
should act as a deterrent. Raftery et al. (1997) have used the Ehrlich data set corrected by Vandaele (1978).
These are aggregate data for 47 U.S. states in 1960, which will be used here as well.

The single-equation cross-section model used here is not meant to be a serious attempt at an empirical
study of these phenomena. For example, the model does not address the important issues of simultaneity
and unobserved heterogeneity, as stressed in Cornwell and Trumbull (1991), but we shall use it mainly for
comparison with the results in Raftery et al. (1997), who also treat it as merely an illustrative example.

We shall, thus, consider a linear regression model as in (1.1), where the dependent variable, y, groups
observations on the crime rate, and the 15 regressors in Z are given by: percentage of males aged 14-24,
dummy for southern state, mean years of schooling, police expenditure in 1960, police expenditure in 1959,
labour force participation rate, number of males per 1000 females, state population, number of nonwhites
per 1000 people, unemployment rate of urban males aged 14-24, unemployment rate of urban males aged
35-39, wealth, income inequality, probability of imprisonment, and average time served in state prisons.
All variables except for the southern dummy are transformed to logarithms.

In line with the recommendations from Section 5, we shall use prior a for this very small sample (n = 47).
We run the MC3 chain to produce 100,000 draws after a burn-in of 25,000. This is more than enough to
achieve convergence, as is evidenced by the near perfect correlation (0.9896) between the actual Bayes factors
computed as in (2.16) and the relative frequencies of model visits. All results will be based on the actual
Bayes factors of the models visited (BARS, as explained in Subsection 5.1). In all, 3378 different models
were visited, and the best 10% of those models account for 73.5% of the posterior model probability. Thus,
posterior mass is not highly concentrated on just a few models. Note that this run takes a mere 80 seconds
on a 120MHz 604 PowerPC Macintosh personal computer.

Table 11 presents the 9 models that receive over 1% posterior probability. The best model is the same as
that in Raftery et al. (1997). In general, model probabilities are very similar, even though our prior is quite

17



   

Table 10. Quartiles of the Predictive Percentiles.
Model 1: Prior a Model 2: Prior a

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .005 .012 .026 .005 .010 .018 .008 .010 .012 .009 .010 .011 .010 .010 .010 .005 .010 .019 .009 .010 .011

.05 .024 .052 .094 .029 .049 .074 .045 .050 .058 .048 .050 .052 .049 .050 .050 .031 .048 .073 .046 .050 .054

.25 .143 .237 .346 .174 .237 .305 .234 .251 .271 .245 .250 .255 .248 .249 .251 .194 .241 .299 .239 .249 .259

.50 .339 .471 .600 .391 .479 .565 .480 .502 .526 .494 .500 .507 .498 .500 .502 .432 .496 .559 .489 .498 .510

.75 .587 .715 .816 .650 .729 .798 .734 .752 .771 .745 .751 .755 .748 .750 .752 .691 .751 .804 .741 .750 .758

.95 .871 .932 .965 .906 .941 .963 .944 .951 .957 .948 .950 .952 .950 .950 .951 .922 .949 .969 .947 .950 .954

.99 .959 .982 .992 .975 .986 .993 .988 .990 .992 .990 .990 .991 .990 .990 .990 .979 .989 .995 .989 .990 .991

Model 1: Prior b Model 2: Prior b

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .008 .018 .036 .007 .013 .022 .009 .010 .012 .009 .010 .011 .010 .010 .010 .004 .010 .021 .009 .010 .011

.05 .032 .064 .107 .035 .054 .079 .045 .051 .058 .048 .050 .052 .049 .050 .050 .027 .047 .079 .045 .050 .054

.25 .154 .242 .339 .179 .240 .306 .233 .251 .271 .245 .250 .255 .248 .249 .251 .175 .236 .320 .237 .248 .260

.50 .333 .453 .569 .385 .469 .549 .479 .501 .524 .494 .500 .507 .498 .500 .502 .405 .491 .586 .487 .498 .512

.75 .562 .679 .775 .630 .709 .775 .731 .750 .769 .745 .751 .755 .748 .750 .752 .669 .749 .819 .740 .750 .760

.95 .836 .903 .944 .891 .927 .953 .943 .950 .956 .948 .950 .952 .950 .950 .951 .916 .950 .972 .946 .950 .954

.99 .940 .968 .985 .967 .981 .989 .988 .990 .991 .989 .990 .991 .990 .990 .990 .978 .989 .995 .989 .990 .991

Model 1: Prior c Model 2: Prior c

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .005 .013 .028 .006 .011 .019 .009 .010 .012 .009 .010 .011 .010 .010 .010 .006 .011 .019 .009 .010 .011

.05 .025 .053 .096 .030 .050 .075 .045 .051 .058 .048 .050 .052 .049 .050 .050 .032 .049 .074 .046 .050 .054

.25 .145 .238 .346 .176 .238 .307 .234 .252 .271 .245 .250 .255 .248 .249 .251 .195 .242 .300 .238 .249 .260

.50 .339 .470 .601 .391 .479 .565 .479 .502 .525 .494 .500 .507 .498 .500 .502 .432 .496 .559 .488 .498 .510

.75 .586 .712 .812 .649 .729 .797 .733 .752 .771 .745 .751 .755 .748 .750 .752 .690 .751 .803 .740 .750 .759

.95 .868 .929 .963 .905 .939 .962 .944 .951 .957 .948 .950 .952 .950 .950 .951 .922 .949 .968 .946 .950 .954

.99 .957 .981 .992 .974 .986 .992 .988 .990 .992 .990 .990 .991 .990 .990 .990 .979 .989 .995 .989 .990 .991

Model 1: Prior d Model 2: Prior d

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .012 .026 .050 .011 .019 .033 .011 .013 .017 .010 .011 .012 .010 .010 .011 .005 .011 .020 .009 .010 .012

.05 .040 .075 .126 .041 .064 .099 .049 .058 .067 .050 .052 .055 .050 .051 .051 .029 .049 .077 .044 .050 .055

.25 .156 .236 .337 .173 .233 .313 .230 .253 .278 .243 .250 .259 .247 .250 .252 .185 .241 .312 .234 .248 .263

.50 .310 .420 .539 .351 .436 .530 .458 .486 .517 .485 .495 .505 .495 .498 .501 .419 .494 .573 .480 .498 .516

.75 .508 .624 .730 .571 .657 .738 .700 .725 .750 .733 .741 .749 .744 .747 .750 .680 .750 .811 .735 .749 .763

.95 .777 .855 .911 .836 .885 .926 .924 .934 .944 .942 .945 .948 .948 .949 .950 .920 .949 .970 .945 .950 .955

.99 .896 .941 .969 .937 .961 .978 .981 .984 .987 .987 .988 .989 .989 .990 .990 .979 .989 .995 .989 .990 .991

Model 1: Prior e Model 2: Prior e

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .005 .012 .026 .006 .010 .018 .009 .010 .012 .010 .010 .011 .010 .010 .010 .006 .011 .019 .009 .010 .011

.05 .023 .051 .094 .029 .049 .075 .045 .051 .058 .048 .050 .052 .049 .050 .050 .032 .049 .074 .046 .050 .054

.25 .143 .236 .346 .174 .237 .306 .233 .251 .271 .245 .250 .256 .248 .249 .251 .196 .241 .299 .238 .248 .260

.50 .338 .471 .600 .392 .480 .566 .479 .502 .526 .494 .500 .506 .497 .500 .502 .434 .496 .558 .487 .498 .511

.75 .587 .715 .817 .650 .730 .798 .732 .751 .770 .744 .750 .755 .748 .750 .752 .691 .751 .803 .740 .750 .759

.95 .871 .932 .966 .906 .941 .963 .943 .950 .957 .948 .950 .952 .950 .950 .951 .921 .948 .968 .946 .950 .954

.99 .960 .982 .992 .975 .986 .993 .988 .990 .992 .989 .990 .991 .990 .990 .990 .979 .989 .995 .989 .990 .991

Model 1: Prior f Model 2: Prior f

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .013 .029 .057 .012 .022 .041 .013 .020 .031 .012 .017 .026 .012 .016 .023 .006 .011 .020 .009 .010 .012

.05 .042 .078 .136 .041 .068 .113 .049 .068 .097 .049 .064 .087 .048 .062 .081 .031 .049 .075 .045 .050 .055

.25 .150 .232 .343 .163 .231 .324 .199 .246 .310 .204 .245 .300 .209 .246 .293 .191 .241 .308 .234 .248 .263

.50 .296 .403 .532 .325 .415 .528 .389 .451 .526 .403 .456 .523 .415 .464 .520 .425 .495 .567 .481 .498 .516

.75 .483 .599 .717 .528 .623 .724 .610 .669 .734 .631 .681 .738 .648 .693 .740 .684 .750 .805 .735 .749 .763

.95 .742 .831 .898 .794 .857 .912 .861 .893 .924 .879 .905 .930 .892 .913 .934 .922 .949 .968 .945 .950 .955

.99 .870 .925 .960 .909 .944 .970 .950 .965 .977 .961 .971 .981 .967 .975 .982 .979 .989 .994 .989 .990 .991

Model 1: Prior g Model 2: Prior g

n = 50 n = 100 n = 1000 n = 10, 000 n = 100, 000 n = 50 n = 1000

% Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

.01 .009 .020 .039 .010 .017 .029 .013 .017 .024 .012 .016 .023 .012 .016 .023 .005 .010 .020 .009 .010 .012

.05 .034 .067 .112 .040 .061 .093 .051 .064 .082 .049 .062 .082 .048 .062 .082 .028 .048 .076 .045 .050 .055

.25 .157 .244 .341 .180 .239 .312 .214 .250 .292 .210 .246 .294 .208 .246 .295 .182 .238 .312 .234 .248 .263

.50 .332 .451 .566 .372 .452 .536 .420 .465 .518 .415 .461 .520 .411 .462 .520 .416 .494 .575 .481 .499 .516

.75 .554 .672 .768 .598 .680 .751 .651 .693 .737 .646 .689 .739 .643 .690 .740 .678 .750 .812 .735 .749 .763

.95 .827 .896 .938 .860 .904 .937 .892 .912 .931 .890 .911 .932 .888 .911 .933 .919 .950 .971 .945 .950 .955

.99 .934 .964 .982 .951 .971 .983 .966 .974 .981 .966 .974 .982 .965 .974 .982 .978 .989 .995 .989 .990 .991
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Table 11. Models with more than 1% posterior probability.

Prob. Included Regressors

1 2.55% 1 3 4 9 11 13 14

2 2.48% 1 3 4 9 11 13 14 15

3 1.68% 1 3 5 9 11 13 14

4 1.52% 1 3 4 11 13 14

5 1.41% 1 3 4 8 9 11 13 14

6 1.28% 1 3 4 9 13 14 15

7 1.11% 1 3 4 9 11 12 13 14 15

8 1.04% 1 3 5 9 11 13 14 15

9 1.02% 1 3 5 11 13 14

different from the one proposed in Raftery et al. (1997). In particular, we only require the user to choose the
function g0j , and choosing it in accordance with our results in Section 5 leads to results that are very close
to those with the rather carefully and laboriously elicited prior of Raftery et al. (1997). In addition, the latter
prior depends on the data, as mentioned in Subsection 2.3.

Table 12. Posterior Probabilities of Including each Regressor.

Regressor Prob.

1 Percentage of males age 14–24 85.95 %

2 Indicator variable for southern state 22.46 %

3 Mean years of schooling 98.77 %

4 Police expenditure in 1960 66.78 %

5 Police expenditure in 1959 41.58 %

6 Labor force participation rate 14.74 %

7 Number of males per 1,000 females 15.24 %

8 State population 32.67 %

9 Number of nonwhites per 1,000 people 68.59 %

10 Unemployment rate for urban males, age 14–24 20.29 %

11 Unemployment rate for urban males, age 25–39 60.63 %

12 Wealth 30.79 %

13 Income inequality 99.94 %

14 Probability of imprisonment 90.73 %

15 Average time served in prisons 33.10 %
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average time served in prisons

Fig. 3. Posterior density functions: Regressors 14 and 15.

Posterior probabilities of including each of the regressors are given in Table 12, which clearly indicates that
schooling and inequality are virtually always included, while the percentage of males aged 14–24 and the
probability of imprisonment are also typically part of the relevant models. Overall, Table 12 roughly agrees
with Table 4 in Raftery et al. (1997). The deterrence variables are probability of imprisonment and average
time served in prisons. These variables are of particular interest for the economic theory of crime, and their
posterior density functions (averaging over models with posterior probabilities) are given in Figure 3. The
coefficients of these regressors can be interpreted as elasticities. The gauge on top indicates (in black) the
posterior probability of inclusion. The probability of imprisonment seems to have a moderately negative
influence, as expected. The average time served in prisons, however, only has a posterior probability of

19



      

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4. Q-Q plot with 75%–25% sample split.

inclusion of one third (see also Table 13).

If we split the data randomly into 35 observations used for estimation and 12 to be predicted, we obtain
the predictive Q-Q plot in Figure 4. This is what Raftery et al. (1997) call a “calibration plot”. We note
that the best single model (graph in grey) predicts considerably worse than the predictive in (4.5) resulting
from BMA (graph in black). Averaging over models with posterior probabilities does a much better job at
predicting the 12 remaining observations than simply taking the model with highest posterior probability.

7. RECOMMENDATIONS

The prior structure we have proposed in Section 2 only requires the choice of one scalar hyperparameter,
called g0j . We make g0j a possible function of the sample size and of the number of regressors in the model
under consideration, Mj . Theoretical results on consistency (in the sense of correctly identifying the model
that generated the data if that model is contained in model space) suggest making g0j a decreasing function
of sample size n. In addition, empirical results on posterior model choice and predictive performance seem
to indicate that the following two priors are reasonable choices:

• prior a, where g0j = 1/n, for small n and data generated from models with relatively few regressors

• prior d, where g0j =
√
kj/n, in other cases.

Thus, we would recommend the prior structure introduced here, together with these choices of g0j for
the purposes of model selection or model averaging in linear regression models, whenever substantial prior
information is lacking or a default analysis is the aim.

Our empirical simulation results compare favourably to those reported in George and McCulloch (1993)
and Raftery et al. (1997), whereas our prior does not depend on the response variable and is very easy to
elicit.
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APPENDIX: SOME ASYMPTOTIC RESULTS

Before examining consistency, we need to establish some preliminary results. Some of these results are
not new, whereas others are easy to derive. Thus, we do not present the proof of Lemma 1.

Lemma 1. Under the sampling model Ms in (3.1),
(i) If Ms is nested within or is equal to model Mj ,

plim
n→∞

y′MXjy

n
= σ2. (A.1)

(ii) Under the assumption that for any model Mj that does not nest Ms,

limn→∞
(α, β′s)X

′
sMXjXs(α, β′s)

′

n
= bj ∈ (0,∞), (A.2)

we obtain

plim
n→∞

y′MXjy

n
= σ2 + bj . (A.3)

A.1. Proof of Theorem 1

Denoting by Cjs the product of the first two factors in (2.16), we have that

Cjs =
(
w1(kj)
g0j + 1

)kj/2(g0s + 1
w1(ks)

)ks/2
w2(n)(ks−kj)/2, (A.4)

and thus

lim
n→∞

Cjs =


0 if kj > ks
1 if kj = ks
∞ if kj < ks.

(A.5)

On the other hand, the limiting behaviour of the last factor in (2.16), which we denote by Djs, depends on
whether Ms is nested within Mj . We therefore consider the following three situations:

A.1.1. Ms is not nested within Mj and kj ≥ ks.
Applying (A.3) we obtain

plim
n→∞

Djs = lim
n→∞

(
σ2

σ2 + bj

)(n−1)/2

= 0, (A.6)

which, in combination with (A.5), leads directly to a zero limit for Bjs.

A.1.2. Ms is not nested within Mj and kj < ks.

In this case, combining (A.5) with (A.6) no longer leads directly to the limit of Bjs. A natural sufficient
condition leading to a zero limit for Bjs is given in (3.4), which ensures that w2(n)(ks−kj)/(n−1) converges
to unity.

A.1.3 Ms is nested within Mj .

Since in this case kj > ks, we know from (A.5) that Cjs converges to zero. However, the limit of Djs is
now difficult to assess. Here we shall present sufficient conditions for a zero limit ofBjs. RewritingDjs as

Djs =
(
y′MXsy

y′MXjy

)(n−1)/2(
1 +

w2(n){w1(ks)(As − 1)− w1(kj)(Aj − 1)} + w1(ks)w1(kj)(As −Aj)
{w2(n) + w1(ks)}{w2(n) + w1(kj)Aj}

)(n−1)/2

,

(A.7)
where

As =
(y − yιn)′(y − yιn)

y′MXsy
and Aj =

(y − yιn)′(y − yιn)
y′MXjy

,

it is immediate that the first factor in (A.7) converges in distribution to exp(S/2), whereS has aχ2 distribution
with kj−ks degrees of freedom. On the other hand, the condition in (3.5) ensures a finite limit for the second
factor. Alternatively, if (3.6) holds, the second factor is (A.7) is smaller than one. Thus, using the fact that
Cjs converges to zero, (3.5) and (3.6) each provide a sufficient condition for a zero limit of Bjs.
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A.2. Proof of results in Subsection 3.2 (ks ≥ 1)

A.2.1. plim(Djs) when Ms is nested within Mj .

Since Ms is nested within Mj we have that y′MXsy ≥ y′MXjy. As a consequence, having a zero limit for
the Bayes factor requires that w(·) be an increasing function, since otherwise Djs ≥ 1. Provided that w(·)
verifies this property, we obtain

plim
n→∞

Djs = lim
n→∞

(
σ2 + g0s

g0s+1b

σ2 + g0j
g0j+1b

)(n−1)/2

= 0, (A.8)

where b denotes the value bj in (A.2) corresponding to Xj = ιn. This immediately leads to (3.7).

A.2.2. plim(Djs) when Ms is not nested within Mj .

Applying (A.1)− (A.3) and assuming that

g0s

g0s + 1
b <

g0j

g0j + 1
b +

1
g0j + 1

bj , (A.9)

where b corresponds to the model with just the intercept and bj to Xj in (A.2), we obtain that

plim
n→∞

Djs = lim
n→∞

(
σ2 + g0s

g0s+1b

σ2 + g0j
g0j+1b + 1

g0j+1bj

)(n−1)/2

= 0. (A.10)

Therefore, (A.9) ensures a zero limit for Djs, and we can deduce the results presented in Subsection 3.2 for
this case.
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