391 research outputs found

    First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved

    Get PDF
    We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55±\pm4 MJ_{\rm J} and age of 22±\pm4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.Comment: ApJ, in pres

    Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf

    Get PDF
    We report the detection of periodic (p = 1.96 hours) bursts of extremely bright, 100% circularly polarized, coherent radio emission from the M9 dwarf TVLM 513-46546. Simultaneous photometric monitoring observations have established this periodicity to be the rotation period of the dwarf. These bursts, which were not present in previous observations of this target, confirm that ultracool dwarfs can generate persistent levels of broadband, coherent radio emission, associated with the presence of kG magnetic fields in a large-scale, stable configuration. Compact sources located at the magnetic polar regions produce highly beamed emission generated by the electron cyclotron maser instability, the same mechanism known to generate planetary coherent radio emission in our solar system. The narrow beams of radiation pass our line of sight as the dwarf rotates, producing the associated periodic bursts. The resulting radio light curves are analogous to the periodic light curves associated with pulsar radio emission highlighting TVLM 513-46546 as the prototype of a new class of transient radio source.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter

    Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis

    Get PDF
    We compared the somatostatin analog radioligand, DOTANOC, with FDG, to determine whether there was increased detection of active or sub-clinical lesions in pulmonary tuberculosis (TB) with DOTANOC. Three groups were recruited: (1) active pulmonary TB; (2) IGRA-positive household TB contacts; (3) pneumonia (non-TB). DOTANOC PET/MRI followed by FDG PET/MRI was performed in active TB and pneumonia groups. TB contacts underwent FDG PET/MRI, then DOTANOC PET/MRI if abnormalities were detected. Quantitative and qualitative analyses were performed for total lung and individual lesions. Eight active TB participants, three TB contacts and three pneumonia patients had paired PET/MRI scans. In the active TB group, median SUVmax[FDG] for parenchymal lesions was 7.69 (range 3.00–15.88); median SUVmax[DOTANOC] was 2.59 (1.48–6.40). Regions of tracer uptake were fairly similar for both radioligands, albeit more diffusely distributed in the FDG scans. In TB contacts, two PET/MRIs had parenchymal lesions detected with FDG (SUVmax 5.50 and 1.82), with corresponding DOTANOC uptake < 1. FDG and DOTANOC uptake was similar in pneumonia patients (SUVmax[FDG] 4.17–6.18; SUVmax[DOTANOC] 2.92–4.78). DOTANOC can detect pulmonary TB lesions, but FDG is more sensitive for both active and sub-clinical lesions. FDG remains the preferred ligand for clinical studies, although DOTANOC may provide additional value for pathogenesis studies

    Update on Mechanical Analysis of Monolithic Fuel Plates

    Get PDF
    Results on the relative bond strength of the fuel-clad interface in monolithic fuel plates have been presented at previous RRFM conferences. An understanding of mechanical properties of the fuel, cladding, and fuel / cladding interface has been identified as an important area of investigation and quantification for qualification of monolithic fuel forms. Significant progress has been made in the area of mechanical analysis of the monolithic fuel plates, including mechanical property determination of fuel foils, cladding processed by both hot isostatic pressing and friction bonding, and the fuel-clad composite. In addition, mechanical analysis of fabrication induced residual stress has been initiated, along with a study to address how such stress can be relieved prior to irradiation. Results of destructive examinations and mechanical tests are presented along with analysis and supporting conclusions. A brief discussion of alternative non-destructive evaluation techniques to quantify not only bond quality, but also bond integrity and strength, will also be provided. These are all necessary steps to link out-of-pile observations as a function of fabrication with in-pile behaviours

    Rotational Modulation of M/L Dwarfs due to Magnetic Spots

    Get PDF
    We find periodic I-band variability in two ultracool dwarfs, TVLM 513-46546 and 2MASS J00361617+1821104, on either side of the M/L dwarf boundary. Both of these targets are short-period radio transients, with the detected I-band periods matching those found at radio wavelengths (P = 1.96 hr for TVLM 513-46546 and P = 3 hr for 2MASS J00361617+1821104). We attribute the detected I-band periodicities to the periods of rotation of the dwarfs, supported by radius estimates and measured v sin i values for the objects. Based on the detected period of rotation of TVLM 513-46546 (M9) in the I band, along with confirmation of strong magnetic fields from recent radio observations, we argue for magnetically induced spots as the cause of this periodic variability. The I-band rotational modulation of the L3.5 dwarf 2MASS J00361617+1821104 appeared to vary in amplitude with time. We conclude that the most likely cause of the I-band variability for this object is magnetic spots, possibly coupled with time-evolving features such as dust clouds

    A Strong Jet Signature in the Late-Time Lightcurve of GW170817

    Get PDF
    We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telescope and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.Comment: 11 pages, 3 figures, 3 tables. Accepted for publication in ApJ Letter

    Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis.

    Get PDF
    We compared the somatostatin analog radioligand, DOTANOC, with FDG, to determine whether there was increased detection of active or sub-clinical lesions in pulmonary tuberculosis (TB) with DOTANOC. Three groups were recruited: (1) active pulmonary TB; (2) IGRA-positive household TB contacts; (3) pneumonia (non-TB). DOTANOC PET/MRI followed by FDG PET/MRI was performed in active TB and pneumonia groups. TB contacts underwent FDG PET/MRI, then DOTANOC PET/MRI if abnormalities were detected. Quantitative and qualitative analyses were performed for total lung and individual lesions. Eight active TB participants, three TB contacts and three pneumonia patients had paired PET/MRI scans. In the active TB group, median SUVmax[FDG] for parenchymal lesions was 7.69 (range 3.00-15.88); median SUVmax[DOTANOC] was 2.59 (1.48-6.40). Regions of tracer uptake were fairly similar for both radioligands, albeit more diffusely distributed in the FDG scans. In TB contacts, two PET/MRIs had parenchymal lesions detected with FDG (SUVmax 5.50 and 1.82), with corresponding DOTANOC uptake < 1. FDG and DOTANOC uptake was similar in pneumonia patients (SUVmax[FDG] 4.17-6.18; SUVmax[DOTANOC] 2.92-4.78). DOTANOC can detect pulmonary TB lesions, but FDG is more sensitive for both active and sub-clinical lesions. FDG remains the preferred ligand for clinical studies, although DOTANOC may provide additional value for pathogenesis studies
    corecore