791 research outputs found

    Quantification of the secretory glycoproteins of the subcommissural organ by a sensitive sandwich ELISA with a polyclonal antibody and a set of monoclonal antibodies against the bovine Reissner's fiber

    Get PDF
    The subcommissural organ (SCO) is an ependymal brain gland that releases glycoproteins into the ventricular cerebrospinal fluid where they condense to form the Reissner's fiber (RF). We have developed a highly sensitive and specific two-antibody sandwich enzyme-linked immunosorbent assay (ELISA) for the quantification of the bovine SCO secretory material. The assay was based on the use of the IgG fraction of a polyclonal antiserum against the bovine RF as capture antibody and a pool of three peroxidase-labeled monoclonal antibodies that recognize non-overlapping epitopes of the RF glycoproteins as detection antibody. The detection limit was 1 ng/ml and the working range extended from 1 to 4000 ng/ml. The calibration curve, generated with RF glycoproteins, showed two linear segments: one of low sensitivity, ranging from 1 to 125 ng/ml, and the other of high sensitivity between 125 and 4000 ng/ml. This assay was highly reproducible (mean intra- and interassay coefficient of variation 2.2% and 5.3%, respectively) and its detectability and sensitivity were higher than those of ELISAs using exclusively either polyclonal or monoclonal antibodies against RF glycoproteins. The assay succeeded in detecting and measuring secretory material in crude extracts of bovine SCO, culture medium supernatant of SCO explants and incubation medium of bovine RF; however, soluble secretory material was not detected in bovine cerebrospinal fluid

    β-ketoenamine covalent organic frameworks—effects of functionalization on pollutant adsorption

    Get PDF
    Water pollution due to global economic activity is one of the greatest environmental concerns, and many efforts are currently being made toward developing materials capable of selectively and efficiently removing pollutants and contaminants. A series of β-ketoenamine covalent organic frameworks (COFs) have been synthesized, by reacting 1,3,5-triformylphloroglucinol (TFP) with different C2-functionalized and nonfunctionalized diamines, in order to evaluate the influence of wall functionalization and pore size on the adsorption capacity toward dye and heavy metal pollutants. The obtained COFs were characterized by different techniques. The adsorption of methylene blue (MB), which was used as a model for the adsorption of pharmaceuticals and dyes, was initially evaluated. Adsorption studies showed that –NO2 and –SO3H functional groups were favorable for MB adsorption, with TpBd(SO3H)2-COF [100%], prepared between TFP and 4,4′-diamine- [1,1′-biphenyl]-2,2′-disulfonic acid, achieving the highest adsorption capacity (166 ± 13 mg g−1). The adsorption of anionic pollutants was less effective and decreased, in general, with the increase in –SO3H and –NO2 group content. The effect of ionic interactions on the COF performance was further assessed by carrying out adsorption experiments involving metal ions. Isotherms showed that nonfunctionalized and functionalized COFs were better described by the Langmuir and Freundlich sorption models, respectively, confirming the influence of functionalization on surface heterogeneity. Sorption kinetics experiments were better adjusted according to a second-order rate equation, confirming the existence of surface chemical interactions in the adsorption process. These results confirm the influence of selective COF functionalization on adsorption processes and the role of functional groups on the adsorption selectivity, thus clearly demonstrating the potential of this new class of materials in the efficient and selective capture and removal of pollutants in aqueous solutions.This work was funded by the Coimbra Chemistry Centre (CQC), which is supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, through the grants ref. UID/QUI/00313/2020 and ref. UI/BD/150809/2020, co-funded by COMPETE2020-UE

    Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions

    Full text link
    We show that the magnetic anisotropy energy of antiferromagnetic ferrihydrite depends on the square root of the nanoparticles volume, using a method based on the analysis of statistical distributions. The size distribution was obtained by transmission electron microscopy, and the anisotropy energy distributions were obtained from ac magnetic susceptibility and magnetic relaxation. The square root dependence corresponds to random local anisotropy, whose average is given by its variance, and can be understood in terms of the recently proposed single phase homogeneous structure of ferrihydrite.Comment: 6 pages, 2 figure

    Highly conducting bombyx mori silk fibroin-based electrolytes incorporating glycerol, dimethyl sulfoxide and [Bmim]PF6

    Get PDF
    Green, transparent and flexible electrolyte films composed of a Bombyx mori silk fibroin (SF) host biopolymer doped with glycerol (G), dimethyl sulfoxide (DMSO, D) and 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) ionic liquid (IL), were synthesized. The materials were represented by the notation SF@GD@ILx (x = 15, 20 and 30 is the mass ratio of SF/[Bmim]PF6 in %). SF@, SF@G, SF@D and SF@GD samples were also prepared. DMSO was found to play a dual-role, acting as solvent of [Bmim]PF6, and enhancing ionic conductivity. DMSO, alone or combined with [Bmim]PF6, led to the increase of the mean roughness and induced the formation of more ordered Silk II conformations (beta-sheets). No structural modifications were detected in the SF@GD@ILx samples upon increasing the temperature up to 100 degrees C. The highest ionic conductivity was exhibited by the IL-rich sample SF@GD@IL30 (1.07 and 4.61 mS cm(-1), at 22 and 100 degrees C, respectively). In the [Bmim]PF6-doped electrolytes "free" and coordinated PF6- ions coexist. The weight losses occurring below 200 degrees C involved essentially the release of adsorbed water and DMSO. The suitable mechanical properties, high ionic conductivity and good electrochemical stability suggest that these electrolytes are attractive candidates for application in electrochemical devices.Veronica de Zea Bermudez would like to express her gratitude to Professor Michel Armand who, during her PhD thesis at Grenoble (1989-1992), was an endless source of ideas that made her work productive and stimulating. His qualities, as an inspiring and extraordinary scientist, equal his kindness, generosity and great heart. This work was supported by National funds by Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/QUI/00686/2018, UID/QUI/00686/2019, UID/QUI/50006/2019 and UID/QUI/00313/2020. The authors thank FEDER funds through the COMPETE 2020 Program and National Funds through FCT under the projects PEst-OE/QUI/UI0616/2014, LUMECD (POCI-01-0145-FEDER-016884 and PTDC/CTMNAN/0956/2014), UniRCell (POCI-01-0145-FEDER-016422 and SAICTPAC/0032/2015), PORPLANTSURF (POCI-01-0145FEDER-029785 and PTDC/CTM-REF/29785/2017), and NORTE01-0145-FEDER-030858. R.F.P.P thanks FCT-UM for the researcher contract in the scope of Decreto-Lei 57/2016 and 57/2017. H.M.R. Goncalves was funded by PTDC/BTM-MAT/30858/2017

    Safety and immunomodulatory effects of three probiotic strains isolated from the feces of breast-fed infants in healthy adults: SETOPROB study

    Get PDF
    We previously described the isolation and characterization of three probiotic strains from the feces of exclusively breast-fed newborn infants: Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036. These strains were shown to adhere to intestinal mucus in vitro, to be sensitive to antibiotics and to resist biliary salts and low pH. In the present study, a multicenter, randomized, double-blind, placebo-controlled trial with 100 healthy volunteers in three Spanish cities was carried out to evaluate the tolerance, safety, gut colonization and immunomodulatory effects of these three probiotics. Volunteers underwent a 15-day washout period, after which they were randomly divided into 5 groups that received daily a placebo, a capsule containing one of the 3 strains or a capsule containing a mixture of two strains for 30 days. The intervention was followed by another 15-day washout period. Patients did not consume fermented milk for the entire duration of the study. Gastrointestinal symptoms, defecation frequency and stool consistency were not altered by probiotic intake. No relevant changes in blood and serum, as well as no adverse events occurred during or after treatment. Probiotic administration slightly modified bacterial populations in the volunteers’ feces. Intestinal persistence occurred in volunteers who received L. rhamnosus CNCM I-4036. Administration of B. breve CNCM I-4035 resulted in a significant increase in fecal secretory IgA content. IL-4 and IL-10 increased, whereas IL-12 decreased in the serum of volunteers treated with any of the three strains. These results demonstrate that the consumption of these three bacterial strains was safe and exerted varying degrees of immunomodulatory effects.Part of the research currently in progress in the authors' laboratory is funded by the company Hero Spain, S. A. through the grant #3582 managed by the Fundacion General Empresa-Universidad de Granada

    Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain

    Get PDF
    Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore