1,122 research outputs found

    The First Fermi-LAT SNR Catalog SNR and Cosmic Ray Implications

    Full text link
    Galactic cosmic ray (CRs) sources, classically proposed to be Supernova Remnants (SNRs), must meet the energetic particle content required by direct measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with the Fermi Large Area Telescope (LAT) have now shown directly that at least three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have systematically characterized the GeV gamma-rays emitted by 279 SNRs known primarily from radio surveys. We present these sources in a multiwavelength context, including studies of correlations between GeV and radio size, flux, and index, TeV index, and age and environment tracers, in order to better understand effects of evolution and environment on the GeV emission. We show that previously sufficient models of SNRs' GeV emission no longer adequately describe the data. To address the question of CR origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.Comment: 8 pages, 10 figures; in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague (The Netherlands

    OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions

    Full text link
    We study the 0.57 keV (O VII triplet) and 0.65 keV (O VIII) diffuse emission generated by charge transfer collisions between solar wind (SW) oxygen ions and interstellar H and He neutral atoms in the inner Heliosphere. These lines which dominate the 0.3-1.0 keV energy interval are also produced by hot gas in the galactic halo (GH) and possibly the Local Interstellar Bubble (LB). We developed a time-dependent model of the SW Charge-Exchange (SWCX) X-ray emission, based on the localization of the SW Parker spiral at each instant. We include input SW conditions affecting three selected fields, as well as shadowing targets observed with XMM-Newton, Chandra and Suzaku and calculate X-ray emission fot O VII and O VIII lines. We determine SWCX contamination and residual emission to attribute to the galactic soft X-ray background. We obtain ground level intensities and/or simulated lightcurves for each target and compare to X-ray data. The local 3/4 keV emission (O VII and O VIII) detected in front of shadowing clouds is found to be entirely explained by the CX heliospheric emission. No emission from the LB is needed at these energies. Using the model predictions we subtract the heliospheric contribution to the measured emission and derive the halo contribution. We also correct for an error in the preliminary analysis of the Hubble Deep Field North (HDFN).Comment: 21 pages (3 on-line), 10 figures (4 on-line), accepted for publication in Astronomy and Astrophysic

    A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant

    Get PDF
    Energetic pulsars can be embedded in a nebula of relativistic leptons which is powered by the dissipation of the rotational energy of the pulsar. The object PSR J0855-4644 is an energetic and fast-spinning pulsar (Edot = 1.1x10^36 erg/s, P=65 ms) discovered near the South-East rim of the supernova remnant (SNR) RX J0852.0-4622 (aka Vela Jr) by the Parkes multibeam survey. The position of the pulsar is in spatial coincidence with an enhancement in X-rays and TeV gamma-rays, which could be due to its putative pulsar wind nebula (PWN). The purpose of this study is to search for diffuse non-thermal X-ray emission around PSR J0855-4644 to test for the presence of a PWN and to estimate the distance to the pulsar. An X-ray observation was carried out with the XMM-Newton satellite to constrain the properties of the pulsar and its nebula. The absorption column density derived in X-rays from the pulsar and from different regions of the rim of the SNR was compared with the absorption derived from the atomic (HI) and molecular (12CO) gas distribution along the corresponding lines of sight to estimate the distance of the pulsar and of the SNR. The observation has revealed the X-ray counterpart of the pulsar together with surrounding extended emission thus confirming the existence of a PWN. The comparison of column densities provided an upper limit to the distance of the pulsar PSR J0855-4644 and the SNR RX J0852.0-4622 (d<900 pc). Although both objects are at compatible distances, we rule out that the pulsar and the SNR are associated. With this revised distance, PSR J0855-4644 is the second most energetic pulsar, after the Vela pulsar, within a radius of 1 kpc and could therefore contribute to the local cosmic-ray e-/e+ spectrum.Comment: 10 pages, 9 Figures. Accepted for publication in A&

    Disentangling hadronic from leptonic emission in the composite SNR G326.3−-1.8

    Full text link
    G326.3−-1.8 (also known as MSH 15−-56) has been detected in radio as a middle-aged composite supernova remnant (SNR) consisting of an SNR shell and a pulsar wind nebula (PWN), which has been crushed by the SNR's reverse shock. Previous γ\gamma-ray studies of SNR G326.3−-1.8 revealed bright and extended emission with uncertain origin. Understanding the nature of the γ\gamma-ray emission allows probing the population of high-energy particles (leptons or hadrons) but can be challenging for sources of small angular extent. With the recent Fermi\textit{Fermi} Large Area Telescope data release Pass 8, we investigate the morphology of this SNR to disentangle the PWN from the SNR contribution. We perform a morphological and spectral analysis from 300 MeV to 300 GeV. We use the reconstructed events with the best angular resolution to separately investigate the PWN and the SNR emissions, which is crucial to accurately determine the spectral properties of G326.3−-1.8 and understand its nature. The centroid of the γ\gamma-ray emission evolves with energy and is spatially coincident with the radio PWN at high energies (E >> 3 GeV). The morphological analysis reveals that a model considering two contributions from the SNR and the PWN reproduces the γ\gamma-ray data better than a single-component model. The associated spectral analysis using power laws shows two distinct spectral features, a softer spectrum for the remnant (Γ\Gamma = 2.17 ±\pm 0.06) and a harder spectrum for the PWN (Γ\Gamma = 1.79 ±\pm 0.12), consistent with hadronic and leptonic origin for the SNR and the PWN respectively. Focusing on the SNR spectrum, we use one-zone models to derive some physical properties and, in particular, we find that the emission is best explained with a hadronic scenario in which the large target density is provided by radiative shocks in HI clouds struck by the SNR

    Influence of high precision telescopic instrument characterization on multilateration points accuracy

    Get PDF
    Currently accuracy of manufacturing machines is a must. Verification is the main way to obtain it; highlighting the volumetric verification as the best technique to improve machine tool position accuracy along all its workspace in the shortest time possible. In this way, different measurements based on multilateration techniques like laser tracker and laser tracer are used. This paper studies how characteristics of a new high precision telescopic system consisting in three lines, with measuring principle based on simultaneous laser affect multilateration accuracy to obtain 3D coordinates. The paper analyses instrument characterising both the design, the components and their operation. Moreover, tests carried out study how instruments behavior affect to the accuracy of data capture using analytical and optimization techniques, proving an error estimation depending on the technique used
    • …
    corecore