18 research outputs found

    Mechanism for deep crustal seismicity: Insight from modeling of deformation process at the Main Ethiopian Rift

    Get PDF
    We combine numerical modeling of lithospheric extension with analysis of seismic moment release and earthquake b-value in order to elucidate the mechanism for deep crustal seismicity and seismic swarms in the Main Ethiopian Rift (MER). We run 2-D numerical simulations of lithospheric deformation calibrated by appropriate rheology and extensional history of the MER to simulate migration of deformation from mid-Miocene border faults to ∼30 km wide zone of Pliocene to recent rift floor faults. While currently the highest strain rate is localized in a narrow zone within the rift axis, brittle strain has been accumulated in a wide region of the rift. The magnitude of deviatoric stress shows strong variation with depth. The uppermost crust deforms with maximum stress of 80 MPa, at 8–14 km depth stress sharply decreases to 10 MPa and then increases to a maximum of 160 MPa at ∼18 km depth. These two peaks at which the crust deforms with maximum stress of 80 MPa or above correspond to peaks in the seismic moment release. Correspondingly, the drop in stress at 8–14 km correlates to a low in seismic moment release. At this depth range, the crust is weaker and deformation is mainly accommodated in a ductile manner. We therefore see a good correlation between depths at which the crust is strong and elevated seismic deformation, while regions where the crust is weaker deform more aseismically. Overall, the bimodal depth distribution of seismic moment release is best explained by the rheology of the deforming crust

    Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift

    Get PDF
    International audienceContinental rift systems form by propagation of isolated rift segments that interact, and eventually evolve into continuous zones of deformation. This process impacts many aspects of rifting including rift morphology at breakup, and eventual ocean-ridge segmentation. Yet, rift segment growth and interaction remain enigmatic. Here we present geological data from the poorly documented Ririba rift (South Ethiopia) that reveals how two major sectors of the East African rift, the Kenyan and Ethiopian rifts, interact. We show that the Ririba rift formed from the southward propagation of the Ethiopian rift during the Pliocene but this propagation was short-lived and aborted close to the Pliocene-Pleistocene boundary. Seismicity data support the abandonment of laterally offset, overlapping tips of the Ethiopian and Kenyan rifts. Integration with new numerical models indicates that rift abandonment resulted from progressive focusing of the tectonic and magmatic activity into an oblique, throughgoing rift zone of near pure extension directly connecting the rift sectors

    Structural Analysis of the Western Afar Margin, East Africa: Evidence for Multiphase Rotational Rifting

    Get PDF
    The Afar region in East Africa represents a key location to study continental breakup. We present an integrated structural analysis of the Western Afar Margin (WAM) aiming to better understand rifted margin development and the role of plate rotation during rifting. New structural information from remote sensing, fieldwork, and earthquake data sets reveals that the N-S striking WAM is still actively deforming and is characterized by NNW-SSE normal faulting as well as a series of marginal grabens. Seismicity distribution analysis and the first-ever borehole-calibrated sections of this developing passive margin show recent slip concentrated along antithetic faults. Tectonic stress parameters derived from earthquake focal mechanisms reveal different extension directions along the WAM (82°N), in Afar (66°N) and in the Main Ethiopian Rift (108°N). Fault slip analysis along the WAM yields the same extension direction. Combined with GPS data, this shows that current tectonics in Afar is dominated by the local rotation of the Danakil Block, considered to have occurred since 11 Ma. Earlier stages of Afar development (since 31–25 Ma) were most likely related to the large-scale rotation of the Arabian plate. Various authors have proposed scenarios for the evolution of the WAM. Any complete model should consider, among other factors, the multiphase tectonic history and antithetic fault activity of the margin. The findings of this study are not only relevant for a better understanding of the WAM but also provide insights into the role of multiphase rotational extension during rifting and passive margin formation in general.</p

    The 2001 Taupō Fault Belt Seismicity as Evidence of Magma‐Tectonic Interaction at Taupō Volcano

    No full text
    Abstract The Taupō Volcanic Zone (TVZ) is the southern extent of the Tonga‐Kermadec volcanic arc and encompasses the Taupō Rift, with the two structures accommodating extension through the central North Island of New Zealand via magmatic and tectonic processes, respectively. Interplay between components of the TVZ and Taupō Rift are evident at Taupō volcano, which exhibits periods of increased seismicity on a decadal scale. One period of increased seismicity occurred in 2001 outside the caldera in the adjacent Taupō Fault Belt. We use seismological analysis to detect and characterize the Taupō Fault Belt seismicity, which aligns in clusters close to active faults, and was preceded by a large cluster of earthquakes beneath Lake Taupō's Western Bay. This cluster and a temporal change in the local stress field imply that a magmatic intrusion beneath the Western Bay initiated the unrest in the fault belt. Our analysis suggests this intrusion may have occurred outside the silicic reservoir at Taupō and that it represents an example of interaction between the regional tectonic and deep mafic magmatic systems at Taupō

    The tectonics and active faulting of Haiti from seismicity and tomography

    Get PDF
    International audienceOblique convergence of the Caribbean and North American plates has partitioned strain across a major transpressional fault system that bisects the island of Hispaniola. The devastating M W 7.0, 2010 earthquake that struck southern Haiti, rupturing an unknown fault, highlighted our limited understanding of regional fault segmentation and its link to plate boundary deformation. Here we assess seismic activity and fault structures across Haiti using data from 33 broadband seismic stations deployed for 16 months. We use traveltime tomography to obtain relocated hypocenters and models of V p and V p /V s crustal structure. Earthquake locations reveal two clusters of seismic activity. The first corresponds to aftershocks of the 2010 earthquake and delineates faults associated with that rupture. The second cluster shows shallow activity north of Lake Enriquillo (Dominican Republic), interpreted to have occurred on a north-dipping thrust fault. Crustal seismic velocities show a narrow low-velocity region with an increased V p /V s ratio (1.80-1.85) dipping underneath the Massif de la Selle, which coincides with a southward-dipping zone of hypocenters to a depth of 20 km beneath southern Haiti. Our observations of seismicity and crustal structure in southern Haiti suggests a transition in the Enriquillo fault system from a near vertical strike-slip fault along the Southern Peninsula to a southward-dipping oblique-slip fault along the southern border of the Cul-de-Sac-Enriquillo basin. This result, consistent with recent geodetic results but at odds with the classical seismotectonic interpretation of the Enriquillo fault system, is an important constraint in our understanding of regional seismic hazard

    No single model for supersized eruptions and their magma bodies

    Get PDF
    The largest explosive volcanic eruptions on Earth (‘supereruptions’) generate widespread ash-fall blankets and voluminous ignimbrites with accompanying caldera collapse. However, the mechanisms of generation, storage and evacuation of the parental silicic magma bodies remain controversial. In this Review, we synthesise field and laboratory evidence from Quaternary supereruptions to illustrate the great diversity in these phenomena. Despite their size, some supereruptions started mildly over weeks to months before escalating into climactic activity, whereas others went into vigorous activity immediately. Some eruptions occupied days or weeks, and others were prolonged over decades. Some were sourced from single bodies of magma, and others from multiple magma bodies that were simultaneously or sequentially tapped. In all cases the crystal-richer, deeper roots (>10 km) of the magmatic systems had lifetimes of tens to hundreds of thousands of years or more. In contrast, the erupted magmas were assembled at shallower depths (4-10 km) on shorter timescales, sometimes only centuries. Geological knowledge of past events, combined with modern geophysical techniques, demonstrates how large silicic caldera volcanoes (with past supereruptions) operate today. Future research is needed particularly on the processes behind modern volcanic unrest and the signals that might herald an impending eruption, regardless of size, at such volcanoes.This work has been supported by the Marsden Fund grant VUW0813 (Royal Society of New Zealand to C.J.N.W.), a James Cook Fellowship (Royal Society of New Zealand) to C.J.N.W., and the ECLIPSE Programme, funded by the N.Z. Ministry of Business, Innovation and Employment. G.F.C. is supported by a NERC Standard Grant (NE/T000317/1), M.L.M. is supported by an NSF CAREER grant (EAR 2042662) and S.J.B. acknowledges Marsden Fund grant VUW1627

    Active deformation constraints on the Nubia-Somalia plate boundary through heterogenous lithosphere of the Turkana depression

    No full text
    Abstract The role of lithospheric heterogeneities, presence or absence of melt, local and regional stresses, and gravitational potential energy in strain localization in continental rifts remains debated. We use new seismic and geodetic data to identify the location and orientation of the modern Nubia‐Somalia plate boundary in the 300‐km‐wide zone between the southern Main Ethiopian Rift (MER) and Eastern Rift (ER) across the Mesozoic Anza rift in the Turkana Depression. This region exhibits lithospheric heterogeneity, 45 Ma‐Recent magmatism, and more than 1,500 m of base‐level elevation change, enabling the assessment of strain localization mechanisms. We relocate 1716 earthquakes using a new 1‐D velocity model. Using a new local magnitude scaling with station corrections, we find 1 ≤ ML ≤ 4.5, and a b‐value of 1.22 ± 0.06. We present 59 first motion and 3 full moment tensor inversions, and invert for opening directions. We use complementary geodetic displacement vectors and strain rates to describe the geodetic strain field. Our seismic and geodetic strain zones demonstrate that only a small part of the 300 km‐wide region is currently active; low elevation and high‐elevation regions are active, as are areas with and without Holocene magmatism. Variations in the active plate boundary's location, orientation and strain rate appear to correspond to lithospheric heterogeneities. In the MER‐ER linkage zone, a belt of seismically fast mantle lithosphere generally lacking Recent magmatism is coincident with diffuse crustal deformation, whereas seismically slow mantle lithosphere and Recent magmatism are characterized by localized crustal strain; lithospheric heterogeneity drives strain localization

    Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift

    No full text
    © 2019, The Author(s). Continental rift systems form by propagation of isolated rift segments that interact, and eventually evolve into continuous zones of deformation. This process impacts many aspects of rifting including rift morphology at breakup, and eventual ocean-ridge segmentation. Yet, rift segment growth and interaction remain enigmatic. Here we present geological data from the poorly documented Ririba rift (South Ethiopia) that reveals how two major sectors of the East African rift, the Kenyan and Ethiopian rifts, interact. We show that the Ririba rift formed from the southward propagation of the Ethiopian rift during the Pliocene but this propagation was short-lived and aborted close to the Pliocene-Pleistocene boundary. Seismicity data support the abandonment of laterally offset, overlapping tips of the Ethiopian and Kenyan rifts. Integration with new numerical models indicates that rift abandonment resulted from progressive focusing of the tectonic and magmatic activity into an oblique, throughgoing rift zone of near pure extension directly connecting the rift sectors

    Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: insights from receiver functions analysis

    No full text
    We used teleseismic receiver function analysis to image the crustal structure beneath 24 broadband seismic stations densely deployed along two profiles traversing different structural units across the western Afar margin. Our high-resolution receiver function results image pronounced spatial variations in the crustal structure along the profiles and provide improved insights to understand how strain is partitioned in the crust during rifting. Beneath the western plateau next to northern Afar, the crust is likely felsic-to-intermediate in composition (average Vp/Vs 1.74), with a step like thinning of the crust from an average of 38 km beneath the western plateau to an average of 22 km beneath the marginal graben. Consistently thicker crust is observed beneath the southern profile (central Afar), showing four distinct regions of uniform crustal thickness: 1) an average crustal thickness of 42 km beneath the western plateau; 2) 34 km beneath the foothills area; 3) 28 km beneath the marginal graben and the wide extensional basin and 4) 21 km beneath the central rift axis. We use crustal thickness results to estimate a stretching factor β of 2.2 and 2.7 for central Afar and northern Afar respectively. Our estimated values are lower than β > 3.0 predicted from plate reconstructions, and we interpret that the variations are best explained by 2–5 km magmatic addition into the crust. The crustal composition beneath the southern profile is more complex with elevated Vp/Vs ratios ranging between 1.79 and 1.85 beneath the western plateau and marginal graben. This is consistent with a greater mafic component and best explained by crust altered by intrusions due to significant pre and syn-rift magmatic activity. Abnormally high Vp/Vs ratios of more than 1.90 are observed beneath the axial rift zone of central Afar, which most likely suggests the localization of partial melt within the crust
    corecore