236 research outputs found

    Eulerian formalism of linear beam-wave interactions

    Get PDF

    Microwave radiation from a tuneable circular free electron laser

    Get PDF

    Relativistic electrodynamics of nonlinear media

    Get PDF

    Anomalous (stimulated) refraction induced by the free-electron laser interaction

    Get PDF

    Generation of short pulses of coherent electromagnetic radiation in a free electron laser amplifier

    Get PDF

    Temporal evolution of beam emittance from a field emission electron

    Get PDF

    Évaluation du risque toxique lié à la prévalence de trihalométhanes dans l'eau utilisée pour la dialyse

    Get PDF
    L'hémodialyse est une thérapeutique réservée aux sujets insuffisants rénaux en attente d'une greffe. Elle permet de recueillir dans un soluté aqueux les déchets que l'organisme ne peut plus évacuer par voie rénale. L'eau nécessaire à la préparation de ce dialysat représente un volume de 90 à 200 litres par séance et par sujet. Elle est obtenue en faisant subir à l'eau du réseau de distribution un traitement complémentaire. Celui-ci comporte en milieu spécialisé une chloration, un adoucissement par résines cationiques, une filtration sur colonne de charbon actif en grains et une osmose inverse.Les trihalométhanes sont probablement les sous-produits de chloration les plus répandus dans les eaux distribuées. Certains parmi eux sont cancérigènes chez l'animal et mutagènes in vitro. Chez l'homme, leurs effets à faibles doses et à long terme restent discutés. Compte tenu des importants volumes d'eau nécessaires à la pratique de l'hémodialyse, il nous a paru intéressant d'observer l'efflcacité du circuit de pré-traitement sur ces composés et d'évaluer les doses auxquelles sont exposés les patients qui bénéficient de cette thérapeutique.Des prélèvements ont été réalisés aux différentes étapes du pré-traitement, de façon hebdomadaire dans deux installations identiques, à la recherche de trihalométhanes. Ils permettent de constater que du chloroforme à une concentration moyenne de 10,5 llgA est encore présent en bout de chaîne. En tenant compte des volumes d'eau utilisés pour chaque séance, ceci signifie que les patients dialysés sont exposés, selon leur âge, à des doses pouvant atteindre jusqu'à dix fois la valeur préconisée dans l'eau potable par l'OMS. La moitié de ce chloroforme est susceptible de passer dans la circulation sanguine et d'exercer un effet toxique. Cette situation peut être corrigée par le choix d'une ressource en eau à charge organique faible, par un renouvellement fréquent du charbon actif et par l'utilisation de membranes en polyamides dans les modules d'osmose inverse. Ces résultats doivent amener à une réflexion plus générale sur la présenoe de sous-produits de la chloration et de micropolluants dans l'eau utilisée en dialyse. Ils doivent également inciter les cliniciens à rechercher, chez les dialysés les plus exposés, d'éventuels effets délétères liés à ces produits.Hemodialysis is an indispensable therapy for patients with chronic renal failure. Two or three times a week and over several years, their blood is dialyzed in an artificial kidney against a dialysis fluid called dialysate.Each time, 90 to 200 liters of this fluid will flow through the apparatus. Before being mixed with the dialysis concentrate, the water will be treated in order to eliminate harmful substances such as aluminum or endotoxins.Trihalomethanes (THM) are probably the most widespread chlorination byproducts of tap water. Most of them are known as carcinogens for animals and mutagens in vitro. Although their hepatotoxicity and nephrotoxicity are obvious after acute intoxication, their effects at low doses on human health have still not been clearly demonstrated.Considering the great amount of water required by hemodialysis patients, we found interested in determining wether the control of these substances by the hospital water treatment plant was efficient. We decided then to analyze weekly and during two months, the tap water of two hemodialysis departments for THM, before and after various forms of treatment. The treatment in both departments was the same and made up of four important stages: chlorination, softening, charcoal filtering and reverse osmosis.THM determinations were conducted using the headspace technique with a gas chromatograph equipped with a split injector and an [sup]63Ni electron capture detector.Our results show that chloroform and dichlorobromomethane were present in tap water. Their respective mean concentration in both department came to 56 µg/l and 5 µg/l. After chlorination and water softening, these figures had moderately but significantly increased. In the first department, thanks to new granular activated carbon, a large part of THM (especially dichlorobromomethane) had been removed. However after seven weeks, this treatment was no longer efficient and only 7% of the influent chloroform and 50% of the dichlorobromomethane could be removed. In the second department, the charcoal filter had already been working for more than one year at the beginning of our study. No decrease of the chloroform concentration had been observed and dichlorobromomethane had significantly increased. 80 to 90% of influent THM were removed after the double stage of reverse osmosis using polyamide membranes. With new granular activated carbon, the dialysis fluid only contains 1 µg/l of chloroform. But after seven weeks or more, it will reach an average of 10.5 g/l of chloroform and 1 µg/l of dichlorobromomethane. These figures are probably underestimated as our study was performed in winter and THM concentrations are less important during that season.These results mean that during a single session, 0.9 to 2.1 mg of chloroform will reach the artificial kidney. Depending on the weight of the patients, this exposure will be equivalent up to 10 times the value recommended by the World Health Organization (WHO) for drinking water.The last part of our study monitored the chloroform concentration in dialysate coming out the artificial kidney during an hemodialysis period. A significant decrease, reaching up to 45% of the influent amount, was observed. This result suggests that some of the chloroform must have crossed the dialysis membrane.According to all these results, we think that it would be of great interest to explore the metabolism of chloroform on hemodialysis patients and to search for eventual toxic effects. Practical advices to people in charge of water treatment plants in hemodialysis department would be to use raw water with low concentrations of humic materials, in order to restrict THM formation. The charcoal filter should be changed more often (probably after 6 or 7 weeks). Alternatively, ways could be found for rapid regeneration of charcoal for THM removal. Finally and according to previous studies, a polyamide membrane should be systematically used for reverse osmosis.Our study could eventually be completed by searching in the dialysis fluid any other chlorination by-products which are responsible to a large extent for tap water mutagenicity

    Thomson and Compton scattering with an intense laser pulse

    Full text link
    Our paper concerns the scattering of intense laser radiation on free electrons and it is focused on the relation between nonlinear Compton and nonlinear Thomson scattering. The analysis is performed for a laser field modeled by an ideal pulse with a finite duration, a fixed direction of propagation and indefinitely extended in the plane perpendicular to it. We derive the classical limit of the quantum spectral and angular distribution of the emitted radiation, for an arbitrary polarization of the laser pulse. We also rederive our result directly, in the framework of classical electrodynamics, obtaining, at the same time, the distribution for the emitted radiation with a well defined polarization. The results reduce to those established by Krafft et al. [Phys. Rev. E 72, 056502 (2005)] in the particular case of linear polarization of the pulse, orthogonal to the initial electron momentum. Conditions in which the differences between classical and quantum results are visible are discussed and illustrated by graphs

    Laser-driven high-power X- and gamma-ray ultra-short pulse source

    Full text link
    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.Comment: 8 pages, 5 figures. Presented at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields" 29.09.-02.10.2008, in Frauenworth Monastery, Bavaria, German
    • …
    corecore