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Abstract

The stimulated refraction effect (optical guiding) in a free-electron laser (FEL) is studied

theoretically. The analysis of the 3-dimensional FEL wave equation is performed accord-

ing to two different formal methods. First, the microwave field is expanded into vacuum

waveguide modes, in which case the optical guiding appears as an active mode coupling

effect. In the second method, the eigenmodes of the FEL radiation field are found, which

yields both the gain of the system (complex eigenvalues) and the radial intensity distribu-

tion of the interacting waves, describing the guiding effect. Computer calculations show

that optical guiding may have a strong influence on both the gain and mode content of

millimeter-wave FELs.

* Permanent address : Thomson-CSF/TTE, 78141 Ve1izy, France.
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Free-electron lasers (FELs) are tunable sources of coherent electromagnetic radiation [1].
One of their most remarkable properties is the large phase shift [2-4] that the resonant

beam-wave interaction induces on the amplified electromagnetic wave. Under proper cir-

cumstances, the refraction associated to this phase shift can be such that the electro-

magnetic wave is confined within the electron beam, in a manner somewhat akin to the

guiding properties in an optical fiber. This stimulated refraction effect, referred to as "opti-

cal guiding" [5-131, has many important implications. For short wavelength FELs, it would

mitigate the effects of diffraction, therefore allowing the length of FEL wigglers to exceed

the Rayleigh range, and the obtention of higher single-pass gains. Such long wigglers are

needed if FELs are to operate either in the vacuum-ultraviolet or at high efficiencies in

the infrared wavelength regime. For millimeter-wave FELs, optical guiding can also be

associated to higher gains due to a better coupling (overlap) between the electron beam

and the FEL radiation mode (higher electromagnetic wave filling factor) ; in addition, the

stimulated refraction effect can strongly affect the mode purity of waveguide FELs.

The purpose of this Letter is to present a simple theoretical analysis of optical guiding

in a waveguide FEL. In contrast with the conventional vacuum waveguide mode expan-

sion, we perform an eigenanalysis of the 3-D FEL wave equation, yielding the eigenmodes

(guided modes) and eigenvalues of the problem. In particular the gain is calculated in a

self-consistant manner, without using the so-called electromagnetic wave filling factor, by

evaluating the imaginary part of the complex eigenwavenumber.

The FEL interaction can be described, within the framework of a linearized fluid

model, by a set of 4 coupled PDEs describing the evolution of the 4-potential vector

perturbation 6A, (60/c,6A)

[&1 -iso - + i . x x g :)# bAIr- + '6A - '-

-. c c-- &i- 6+,60 X t +014 X1 -t bf =0, 1

ti &+-iV 6A = 0. (2)

where

C2 r e

is the d'Alembertian operator (electromagnetic wave propagator). Here, the quantities
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indexed "0" refer to the unperturoed fluid equilibrium. Note that we can easily identify the

different terms in equation (1) as a beam-mode type operator coupled to an electromagnetic

wave propagator, and a beam coupling term proportional to the beam density (w2) and

containing the ponderomotive force. Here, we have assumed that the equilibrium field is

purely magnetic (E0  0), and we have defined the following parameters

e L0 4 noe2  _-

o 0m I 70- C o=y OM 2 0 'YOm 0  c

At this point, different beam-wave interactions are characterized by different fluid equilibria

and different boundary conditions for 6A, and its derivatives.

We now consider a FEL with an axial guide field, pumped by a helically polarized

wiggler. The waves propagate in a cylindrical waveguide of radius r = a. The externally

applied fields are purely magnetic, and we neglect the self-fields generated by the beam.

We have

Bo(9, z) = B + Bw(i cos + O sin &), (3)

where B is the strength of the axial guide magnetic field, B, is the amplitude of the

wiggler field and = ksz - 0, where f, = 27r/kw is the wiggler period. Note that here,

for the sake of simplicity, we consider a radially uniform wiggler field and that we neglect

the space-charge effects of the electron beam on the fluid equilibrium. The corresponding

equilibrium fluid velocity field is

3 (0, z) = i3 + 3 (r cos V + sinv), (4)

where the normalized fluid velocity components 31 and Oi are constrained by energy

conservation
1
2 - -(5)

20
and related by the following equation

(6)

Here, we have defined the relativistic cyclotron frequencies Q1 and 9., in the guide and

wiggler fields, respectively. Because the divergence of the equilibrium fluid velocity field

(4) is zero, the beam density profile can be described by a step function

nn 0. for r < rb: (7)

0 , for rb < r < a;
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where rb is the beam radius, which satisfies the equilibrium continuity equation everywhere,

except at the edge of the beam. The surface effects can then be modelled by non-uniform

surface charge and current distributions. Making use of equations (3) to (7) into the initial

system (1-2) yields the 3-D FEL wave equation describing the evolution of the microwave

laser field in the linear regime.

At this point, the 3-dimensional analysis of the FEL radiation field can be performed

according to two different formal methods. One can either find the eigenmodes of the

system, which yields both the gain (eigenvalue) of the system and the radial intensity

distribution of the interacting waves., or expand the microwave field into vacuum waveguide

modes and make use of the orthonormality of these modes to study their coupling. In the

latter case, the guiding appears as an active mode conversion effect. We first briefly review

the coupled-mode analysis. The general form of the 3-D wave equation is[ w(r)1
E c2 C(r, w, k) 6'A= 0, (8)

where the coupling operator C contains the space-charge waves; the beam dynamics effects,

etc. The solution is expressed as a superposition of vacuum waveguide modes

6= 6Am0m, (9)
m

satisfying the following eigenvalue equation

LC C - - k2 _ 7, -2 (10)

Here, xm corresponds to the cutoff frequency of the m-th vacuum mode, determined from

the boundary conditions at the waveguide walls. For TEI, modes in a cylindrical pipe

of radius a, j, = x',n/a. The wave equation is then reduced to a set of coupled linear

equations by integrating over the waveguide cross-section and using the orthonormality of

the Um's

/a -2 _ 2 - )LdS U*>Z - -k C(r, w, k) 6Amm = 0, (11)

to obtain

- 2  
- X 2 + L5 4 C 2C

- k2 - x2 + Can(, k) 2A Cmn(w,k)A, = 0. (12)
27n C 2 ] m n
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Here, the guiding effect appears as active mode coupling. In the conventional theory, one

neglects the coupling terms C,,, and introduces the electromagnetic wave filling factor,

defined as

P2 = dS U[-) U,, (13)

to obtain the usual FEL dispersion relation for cylindrical TEI, modes

22

C2 a c (11 (kc)]"[ + 'P(kV-01 I c 0 1(ky +ck )-

P2 wPo kkW. (14)

Here, 4 is a correction to the space-charge dispersion equation due to the combined presence

of the axial and wiggler magnetic fields [14'. From this relation, it is straightforward to

evaluate the Raman growth rate

6 2 1-P2 = )1/2 p2(iI'o)2. (15)

We now study the eigenmodes of the system, for TE (bA = 60 = 0) geometry. The

interaction region is divided into two areas. Region 1 (rb < r < a) corresponds to the

vacuum surrounding the electron beam. The plasma frequency W,(r) = 0, and the general

solution to the 3-D wave equation for the azimuthal component of the 4-potential vector

is of the form

6A 0 (r, 0, z,t) =[.4J, (xir) -- BY, (xir)] exp[i(wit - k i z + 11)], (16)

where k, and x 1 are constrained by the vacuum dispersion relation

D (ki, xi) = C2 - ki - X = 0. (17)

Note that in this region of space, the Bessel function of the second kind can be included in

the general solution because r > Tb T 0. Region 2 (0 < r < rb) corresponds to the electron

beam. Here the plasma frequency is constant w,(r) = wpo, and the general solution for

6A 8 is of the form

6 (r, 9, z t) CJ 2 (X2r) expi(w21 - k2 z + 129)], (18)
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where k2 and x2 are constrained by the beam dispersion relation [D2 (k2 , X2 ) = 01,

2-

2 - 2 [ - 3(k 2 4- k .. ) + "']" -U;2 (k2 + k.) - _V/0]
c I [c Y c c 'yic

1 W c2 k2k. (19)

The boundary conditions are the following. At the waveguide wall (r = a), the tangential

electric field component (bEE = -iwi5A) must be zero, which yields

bAo(r = a) = 0. (20)

At the beam edge (r = rb), we require that the 4-vector potential be continuous

AbA(r = rb) = 0, (21)

which is equivalent to having 6E and 6B, continuous. Finally, we use the dielectric

boundary condition

a6rAo(r = rb) = 0. (22)

This last condition implies that we have neglected the surface current distributions at the

beam edge. The continuity of 6.4 0 at the beam edge (21) yields the following relations

k,= k2 = k, (23)

11 12 = 1, (24)

W1 =U2 = W, (25)

which correspond to the fact that continuity must hold at any z, 0 and t, respectively. In

addition, we have

AJ;(xlrb) -- BY'(xirb) = CJj(x2 rb). (26)

The continuity of a6Ao at r = rb (22) yields

X[AIJ'(x 1rb) + BI"'(xIrb)] = x 2CJI'(x2 rb). (27)

Finally, the boundary condition at the waveguide wall (20) results in

AJI(x ia) + B1Y'(xia) = 0. (28)
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Combining equations (26), (27) and (28), and upon elimination of the constants A, B and

C, we obtain a third relation [Do(xi, x 2 ) = 01,

YI" (xirbl x2 Jj(x2rb ) '(la Y '(x Irb
Ji(xrb) -J(x 1a) ,a Jijxrb) - Jxixa) , =0. (29)

Jj ~ I" (xi1a) X1J,(X2rb) I (Xia) . (9

Equation (29) and the two dispersion relations in vacuum (17) and inside the beam (19)

form a system of 3 nonlinear equations in the complex eigenvalues k, x, and x 2

Do(xl,x 2 ) = 0 , D 1(k,xi) = 0 , D2 (k, x2 ) = 0.

We can solve these equations as functions of the frequency w to obtain the complex eigen-

wavenumber k(w), where Im(k) is the 3-D growth rate of the FEL instability, and x1 (w)

and x 2 (w) which determine the radial profile of the electromagnetic waves (eigenmodes)

in the interaction region, and therefore describe the optical guiding effect in a waveguide

FEL.

To illustrate the derivations presented above, we have done some computer calcula-

tions. comparing the FEL gain and radiation field profile with and without guiding. The

example we study corresponds to the design parameters of a FEL experiment planned

at MIT in collaboration with TTE. The beam voltage is V = 500 kV, the beam current

density is kept constant at j 0.337 kA/cm2 . The nominal wiggler field amplitude is

B, =500 G, with a period 1, 3.0 cm. The guide field strength is Bg = 2.5 kG, and the

waveguide radius is a = 10 mm. The microwave are launched in the fundamental TE11

cylindrical mode. For these parameters, the operation frequency is w+/27r ~ 42 GHz. On

the drawings, the TE1 1 mode and the eigenmode are normalized so that they have the

same power flux through the waveguide. In Figure 1, we show the radial profile of the

normalized azimuthal electric field component for a 5-mm-radius electron beam, and 3

different amplitudes of the pump : B, = 0, 100 and 500 G. As the optical activity (gain

and phase shift of the FEL interaction) of the beam increases, the guiding effect appears

clearly and the eigenmode deviates substantially from the vacuum TE11 mode. In Fig. 2,

the wiggler field is held constant at B, = 500 G, and we plot the normalized microwave

intensity profile as the beam radius is varied from 4 mm to 9 mm. The guiding effect

is strong at small beam radii (strong transverse "gradient" of the anomalous refractive

index) and, as expected, the eigenmode relaxes towards the vacuum TE11 mode as the

7



beam radius increases. Note that if the beam fills the waveguide, no guiding is expected.

Finally, in Fig. 3 we plot the ratio of the imaginary part of the eigen-wavenumber Im(k) to

the TE 1 gain Fo,/j-, calculated from Eq. (15). For large beam radii, the guiding is small

and both gains are comparable and close to the 1-D gain, Fo. However, as the beam radius

decreases, the electromagnetic wave filling factor for the TE1 1 mode P2 is strongly reduced,

while Im(k) remains close to Po. At still smaller radii, the radiation appears to decouple

from the beam, which may be due to strong diffraction effects. It should be noted, how-

ever, that at the present time our model does not include the effects of the surface charge

and current distributions, which clearly become predominant at small beam radii.

In conclusion, we have described a theoretical model of the FEL interaction in the lin-

ear regime that includes the stimulated refraction effect which is the physical phenomenon

at the origin of optical guiding. Indeed, we find that the eigenmodes of the problem can

substantially deviate from the vacuum waveguide modes used in other models. In addition,

the imaginary part of the complex eigen-wavenumber directly yields the gain, making the

calculation of the so-called electromagnetic wave filling factor an unnecessary step. We find

that this gain can be higher than that calculated from the vacuum mode theory. Finally,

it should be pointed out that our model can be improved by using more complete bound-

ary conditions at the beam/vacuum interface, in particular by including the non-uniform

charge and current distributions at the beam edge resulting from the wiggling of the beam.
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Figure Captions

Fig. 1 Normalized azimuthal E-field component of the eigenmode as a function of the nor-

malized radius for B, = 0, 100 and 500 G. The beam radius is rb = 5 mm.

Fig. 2 Normalized microwave intensity profile for the eigenmode (solid line) and the TE11

mode (dashed line) for different beam radii. The wiggler field B, = 500 G. The beam

edges are marked by the arrows.

Fig. 3 Ratio of the imaginary part of the eigenvalue k to the TE11 gain as a function of the

normalized beam radius, for different values of B,2.
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