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Abstract

A detailed account of a formal mathematical description of the interaction of relativistic

charged particle beams with electromagnetic waves, within the frame rf classical electro-

dynamics, is presented. The standard system of 8 equations (Maxwell, Lorentz gauge

condition and fluid dynamics) in the 4-vector potential A, and the 4-vector current den-

sity j, is reduced, after linearization, to a canonical system of 4 coupled partial differential

equations in the electromagnetic field perturbation 6A,. Both electromagnetic and dy-

namical quantities are treated as fields. according to the Eulerian formalism. This new

system is very general. and different beam-wave interactions are characterized by different

fluid equilibria and boundary conditions for 6A,, and its derivatives.

* Permanent address : Thomson Tubes Electroniques. 78141 Vifizy, France.
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One of the central problems of relativistic electrodynamics is the interaction of charged

particles beams with electromagnetic waves['-61. The physics of such interactions is

very rich and a wide variety of complei phenomena arise, ranging from synchrotron and

Cerenkov(6I radiation to free-lectron laser, cyclotron mas and other instabilities in-

volving non-neutral plasmas, as extensively discussed by DavidsonIT7 . A large class of

beam-wave interaction problems involve electromagnetic energies that are small compared

to the particles kinetic energy, and a perturbation theory is appropriate to describe such

linear beam-wave interactions. This category of problem will be the focus of our attention

in this paper. Different formal mathematical descriptions of this type of interaction are

possible, such as the Maxwell-Vlasov kinetic theory or the Maxwell-Euler fluid model. In

this work, we consider the latter theory which involves the manipulation of fields for both

electromagnetic and dynamical quantities, and of operators such as the electromagnetic

wave propagator (d'Alembertian operator) or the fluid convective derivation, providing a

compact and elegant mathematical framework to study these interactions.

The main object of this work is to show that starting from the standard set of 8

equations in the 4-vector potential A, and the 4-vector current density j,, we can obtain

a canonical system of 4 coupled partial differential equations describing the evolution of

the electromagnetic field perturbation 6A,,, by linearizing the interaction equations. The

compact set of partial differential equations (PDEs) derived in this manner involves the

perturbed electromagnetic 4-vector potential and the equilibrium fluid field components.

Different specific problems are characterized by different fluid equilibria and boundary con-

ditions for 6 A, and its derivatives. The initial set of 8 equations consists of the 4 Maxwell's

equations with sources describing the evolution of the 4-vector potential, the Lorentz gauge

condition, which is equivalent to the conservation of charge or to the continuity equation,
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and 3 fluid equations of motion.

At this level, two main formal approaches can be used to solve this linear system

of PDEs'A. On the one hand, one can expand 6A, into known eigenmodes satifving

the appropriate boundary conditions, and study the coupling of these modes through the

coupled PDEs. The other approach consists in solving directly these equations, then using

the boundary conditions to determine the actual eigenvalues and eigenfunctions of the

problem.

We now review the general formalism describing the interaction of a relativistic elec-

tron (or other charged particles) beam with electromagnetic fields, within the frame of

classical electrodynamics. A very large number of methods have been described in the

litterature, and there is, sometimes, some confusion about which equations and which

variables are most appropriate to formally describe a specific interaction problem. For

example, it is well-known that the gauge condition, the conservation of charge and the

continuity equation are equivalent. Here. our objective is to reduce the linearized equations

of interaction to a canonical system of 4 equations in the 4-vector potential perturbation

SA.(X-').

We first briefly review the equations relevant to the problem. The interaction of

charged particles with electromagnetic fields can be described. in the classical limit, by

two sets of equations. On the one hand, Maxwell's two groups of equations, governing the

fields,

Vx E-+aB=O. (1)

-B=O0. (2)
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and the group with sources

'-E= -p, (3)

O x- 5= .(4)
C2

On the other hand, the equations governing the particles dynamics, which are given by

OW = -e($ + F x ff), (5)

and the continuity equation (charge or particles conservation)

jp+ 0j=O. (6)

Here, , = -entc,i- is the 4-vector current density, with n the particle

density and F = cA their velocities. The particles' momentum is given by F = 7m.F, and

their energy kby y- 2  _ j 2 .

At this point, it is important to note that Maxwell's first group of equations i,(1) and

(2)1 suggests the introduction of the 4-vector potential A, 6. A. defined such that

£ = - d . (7)

= x Z.(8)

As a result. equations (1) and (2) are automatically satisfied. If. in addition. we impose

that the 4-vector potential satisfies the Lorentz gauge condition

TBav - V - A = 0. (9)

we see that the second group of equations is equivalent to

2<-P=, (10)
L -_

2 _ MO (11)
L C2
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It should also be noted that the gauge condition (9) is equivalent to the continuity equation

(6).

The equation of momentum transfer (5) implicitly satisfies energy conservation as can

be seen by taking the dot product of equation (5) by f, to obtain

df = _- . (12)

Finally, using the definitions, equation (5) can be transformed to read, within the frame-

work of a relativistic fluid model,

8t+ 1- Vli= - I- - )2 ,i+ x x' +r(xX+8,) - . (13)

where we have used the explicit expression for convective derivation. We thus obtain a

closed system of 8 equations with 8 unknowns A,, n and ir

[ 2 _ X = oeVF (14)

2 _ a 0 = 1en. (15)

- f 0. (16)

together with equation (13).

We now focus on the linear analysis of the beam-field interaction. Any fluid field

component f(z,) is written f = fo - 6f. The quantity fo refers to the beam self-consistent

equilibrium in the external fields. while 6f corresponds to the electromagnetic perturbation.

Note that here. no assumption is made about the nature of the fluid equilibrium considered:

in particular, this equilibrium can be space-time dependent. We assume that for all fluid

field components. we have 5f < 1f4. We can then linearize the equations presented
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above, with the result that

f72 2]6 -ebn, (18)[2 102

8t,0+ 1 - 6= 0, (19)

[Be~~~ ~~ +tb i- ]+(6-]F=-5 -85+ 6i x ffo + 160 x x s'i
_foMO

50- -(j + 8, 0]- (Eo -Ao)

( - 6._) -t+io x fo - (E. 1- Fo) (20)

Here the equilibrium electric and magnetic fields are Eo(z,) and &(z,,), respectively. We

shall now reduce this system by considering

noSW= - (21)
14e\ c)

where

f,2 1 t, (22)

is the d'Alembertian operator (electromagnetic wave propagator). We have. on the other

hand.

:&t il.0 -(nobf) = no Ia - o -f -f - 6, - iF n, (23)

and, after (21),

+ t -(nobe) = j(O6A- O0 ). (24)

The first term on the right-hand side of equation (23) is given by (20)

nol(iet- *o - f 66- '(no6?7) - iFo = -no- Ab & 616 x Bo - x V x 6A

Voo
- to0 .- 5- (fbO +i atb61) -go"; - (Eo - 6o )

o 1 t-f - 71 f-(5

C2 F-.UG( ) o+vo x 40 - (E0 .- fo) (25)
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while the second term can be derived from the equilibrium continuity equation

aeno + (noieo) = 0 4=O Lat + io -tno = -no(f -,FO). (26)

We thus have

60+o -I + -ol - - = eno[at + 6 - -(27)

We now use equation (25) to obtain

i c-- - r/ - 64
L06 + 50 -7 +0 .10 - 06 -o 0 A 0 - + (OkA -,560- -] Ao = -pAen'D

-agx + 8,5+ x go + !WO x f x Sx - [5 - cft- -(+ at51) -60 ]

-) - +6) -to + x do - (to

(28)

At this point, we define the following fluid equilibrium fields

_effo(X.) U2 no (x,)e 2  = io~xr,) -=eor)

yo(z,1)m. c2 Tox)m A0  ~ ,)~

which are, respectively, the relativistic cyclotron frequencies in the equilibrium magnetic

field, the relativistic beam plasma frequency, the normalized fluid equilibrium velocity

field and the normalized equilibrium electric field, governing the energy time-scale. The

formalism described here includes the most general case, where the dynamical quantities

describing the fluid equilibrium state are functions of both space and time.

Upon replacement of every quantity no0 iF appearing on the right-hand side of equation

(28) by the value defined in (21), we end up with the sought-after canonical system of 4

equations in the 4-potential vector perturbation 6A, , } il
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0~~~ jo_§ X

+ -S4-R0+ x x A 1 + 0 (V64+8,6A)- o0 =0, (29)

(0)

at26 + f7 -X 5= 0. (30)

Note that we can easily identify the different terms in equation (29) as a beam-mode

type operator coupled to an electromagnetic wave propagator, and a beam coupling term

proportional to the beam density profile w,(z,.) and containing the ponderomotive force.

At this point, different beam-wave interactions are characterized by different fluid

equilibria and different boundary conditions for 6A,. At this level, two main formal

approaches can be used to solve the canonical s- stem derived above. On the one hand, one

can expand 6A, into known eigenmodes satisfying the appropriate boundary conditions.

and study the coupling of these modes through the coupled PDEs describing the evolution

of the 4-vector potential perturbation. The other approach consists in solving directly

these equations, then using the boundary conditions to determine the actual eigenvalues

and eigenfunctions of the problem.

This formal description of beam-wave interactions is quite general and can be used

as a new canonical system of PDEs describing the self-consistent evolution of the 4-vector

potential perturbation in the linear regime. The formalism is Eulerian in the sense that

the (now implicit) fluid dynamical quantities are treated as continuous space-time fields,

on an equal footing with their electromagnetic counterparts.
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Finally, we plan to expand on this theory in an upcoming paper by treating the

problem of optical guiding in a FEL~l within the framework of the formalism exposed in

this letter.
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