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ABSTRACT

Multiple-scale perturbation theory is used to obtain periodic orbits of relativistic elec-

trons in the external electric and magnetic fields of a planar cross-field free electron laser

(FEL) operating near the fundamental resonance. The condition for this resonance is

2-yok.vo = (eBo/-yomo)(i +a2 )-1/ 2 , where k, is the wavenumber of the magnetic wiggler

field, vo = E0 /B 0 is the electron drift speed in the crossed uniform electric and magnetic

fields, yo = (1 - vo/c 2 )'/ 2 is the relativistic factor associated with the Lorentz trans-

formation between the laboratory frame and the drift frame, mo is the rest mass of the

electron, aw = 2~'/ 2 (eBw/mockw) is the normalized r.m.s. vector potential of the wiggler

field, and Bw is the magnitude of the wiggler field. The orbits are expressed in an approx-

imate form suitable for use in linearized Vlasov stability analysis and are used to obtain

Vlasov distribution functions which correspond to kinetic equilibria that are uniform and

nonuniform (across the anode-cathode gap). Appropriate moments of these distribution

functions yield corresponding fluid equilibria. These equilibria are developed as a basis for

a linear stability analysis of the cross-field FEL operating near the fundamental resonance.

t Present address: Thomson-CSF, 2 Latecoere, B.P. 23, 78140, Velizy-Villacoublay,

France



1. Introduction

The cross-field free electron laser (FEL) is a generator of coherent electromagnetic radiation

in which a tenuous relativistic electron beam propagates in an anode-cathode gap that

contains a combination of external fields similar to the external fields of a magnetron and

the field of a magnetic wiggler. The configuration of the device may be coaxial or planar.

For the sake of simplicity, a planar configuration will be considered in this work. (See

Figure 1.) The magnetron fields are crossed electric and magnetic fields, E1 and BO.

(The superscript i denotes the laboratory frame. It is added because most of the analysis

presented in this paper is carried out in the EZ x BO drift frame.) The planar anode

and cathode, which are not indicated in the figure, are perpendicular to the electric field.

The axial direction of the anode-cathode gap is perpendicular to the electric and magnetic

fields. The wiggler field B, is a planar magnetic field whose polarization is parallel to the

electric field EO and which varies harmonically in the axial direction of the anode-cathode

gap with spatial period 27r/k., where k, is the wiggler wavenumber.

The dominant motion of electrons in the external fields is a drift of velocity i70

E x d/B'I , where Bo is the magnitude of .9. In some of the theoretical work concerning

cross-field FEL's published to date,1 - 3 the motion of electrons in the external fields relative

to the E x BO drift is assumed to be mainly perpendicular to the plane of the wiggler,

as in the case of a conventional FEL with planar wiggler. (This is the direction parallel to

the uniform magnetic field BO.)

Examination of the equations of motion of a relativistic electron in the external fields

discloses the existence of a series of nonlinear resonances. They may be described as occur-



ring between twice the wiggler-induced frequency and the gyro-frequency in the uniform

magnetic field, both expressed in the drift frame of reference. The condition for the fun-

damental resonance is given in the limit of a weak wiggler by the approximate equality

2-ok-,o ~ eBo/-yorno,' where vo = EO/Bo is the electron drift speed in the crossed

uniform electric and magnetic fields, -yo = (1 - vo/c 2 )-1 2 is the relativistic factor associ-

ated with the Lorentz transformation between the laboratory frame and the drift frame,

and ino is the rest mass of the electron. Near the fundamental resonance, the electron

motion is primarily in the plane of the wiggler. Several theoretical and experimental 4-

investigations have explored this resonance and the generation of electromagnetic radiation

associated with instability occurring under fundamental resonance conditions. Heretofore,

electron motion in the external fields near the fundamental resonance has been obtained

from a nonresonant linear analysis, with the amplitude of the motion treated as a spec-

ified parameter. This procedure is incomplete, although it is not objectionable as far as

it goes because the functional form of very weakly nonlinear motion near the resonance

is the same as that of linear nonresonant motion. In both cases, the motion is driven at

the frequency wd = 2-yokvo and there is a phase constant which depends on the mean

electron position. The amplitude of the motion, however, depends on the extent to which

the resonance condition is satisfied. Near resonance, the amplitude is strongly enhanced.

This is extremely significant for the linear stability analysis because the growth rate of the

instability is proportional to the amplitude of the motion.

The ultimate objective of this work is to develop kinetic and fluid equilibria which

are valid for conditions near the fundamental resonance. These equilibria provide the
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basis for a linear stability analysis of the cross-field FEL under such conditions, which

will be presented in a subsequent paper. The process for obtaining the equilibria is the

following. Multiple-scale perturbation theory is used to obtain an analytic approximation

to weakly nonlinear, periodic, single-particle motion near the fundamental resonance. II

the process of deriving the approximate motion it is found that, in the case of finite wiggler

amplitude, the correct resonance condition is 2-yokvo :: (eBo/-yomo)(1 + a2)-1/ 2 , where

a,,= 2-1/ 2 (eBw/mockw) is the normalized r.m.s. vector potential of the wiggler field and

Bw is the magnitude of the wiggler field. The amplitude of the motion, treated in previous

work as a specified parameter, is determined by the solution of a cubic equation. The orbits

are placed in an approximate form suitable for use in linearized Vlasov stability analysis

and are used to obtain Vlasov distribution functions which correspond to kinetic equilibria

that are uniform and nonuniform (across the anode-cathode gap). Appropriate moments

of these distribution functions yield corresponding fluid equilibria.

In Section 2 the external fields and the single-particle equations of motion are ex-

pressed in the ES x Mi drift frame. Two of the component equations of motion are inte-

grated directly to yield exact invariants. They are used, in combination with the remaining

component equation of motion, to obtain a second-order differential equation for the com-

ponent of electron position in the axial direction of the anode-cathode gap as a function of

time. This equation is referred to as the exact combined differential equation. Because of

the complexity of this equation, exact analytic solutions are almost certainly not available.

In Section 3 an approximation to the exact combined differential equation is obtained. It

has the form of a weakly nonlinear oscillator that is weakly driven by a wave-harmonic
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excitation. It is referred to as the approximate combined differential equation. Because of

the spatial dependence of the wave-harmonic excitation, it is a more complicated equation

with a more extensive structure of resonances than the corresponding equation driven by

a time-harmonic excitation. In Section 4 multiple-scale perturbation theory is used to ob-

tain lowest-order periodic solutions of the approximate combined differential equation near

the fundamental resonance. In Section 5 the orbits which have been obtained are placed

in an approximate form suitable for use in linearized Vlasov stability analysis. They are

used to obtain Vlasov distribution functions which correspond to kinetic equilibria that are

uniform and nonuniform (across the anode-cathode gap). Appropriate moments of these

distribution functions yield corresponding fluid equilibria. In Section 6 the results of this

work are summarized.

2. Equations of motion and invariants in the EO x BO frame

In this section the external fields and the single-particle equations of motion are expressed

in the ES x M$ drift frame. Two of the component equations of motion are integrated

directly to yield exact invariants. They are used, in combination with the remaining

components equation of motion, to obtain a second-order differential equation for the

component of electron position in the axial direction of the anode-cathode gap as a function

of time. This equation is referred to as the exact combined differential equation. Because of

the complexity of this equation, exact analytic solutions are almost certainly not available.

There are two motivations for transforming to the drift frame: first, to remove the

static electric field; and second, to satisfy the condition that the motion is non-relativistic

for typical velocities, i.e., v 2 /c 2 < 1.
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The geometry and external fields of the system are described by Figure 1, which also

indicates the Lorentz transformation between the laboratory frame, denoted by St, and

the E0 x BO drift frame, denoted by S. In the laboratory frame, the external fields are

-1 (I-a)5E Eoa., BO = Bo6Y, 7a

and

W, B= cos(kz)dz. (1-b)

Here zt is the z-component of position in the laboratory frame. The velocity of the S

frame with respect to the St frame is

go = vo 2, (2)

where vo = Eo/Bo. (Rationalized MKS units are used in this paper.) The relativistic

factor -yo associated with the Lorentz transformation between the laboratory frame and

the drift frame is given by

-o = (1 - v2/c2-1/2. (3)

The relation between zA and the z-component of position, z, and the time, t, in the drift

frame, is given by

zI = yo(z + vot). (4)

The Lorentz transformation equations for the electric and magnetic fields in the drift frame

are

5 = -yo( 1  + o x P1 )

and

B= y 0(B1 - c 2 J0 x '),
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where F' = Eo and .' B + B,. Explicit expressions for E and B are

E = zovoB, cos[-yok,(z + vot)] y (5-a)

and

B = -yoB, cos[-yok,(z + vot)]}, + 7 IBoe6. (5-b)

(See Figure 1. There, but not in the text, the uniform and nonuniform, time-dependent

parts of the magnetic field B of (5-b) have been denoted for the sake of clarity by Bo and

B, respectively.)

The single-particle equations of motion in the drift frame are

d = -e(E+,U x B) (6)
dt

and

d-y e

dt moc 2

where £ and B are given by (5). The relation between the momentum p and the velocity

v is

5= 7moi7  (8)

where

-y = (1 - v 2 /c 2 )-1/ 2 
- (1 + p2 /mc 2 )1/2. (9)

The cartesian component equations of motion in the drift frame are

dpx -dpt = eBo-y- v, (10-a)
dt

-eB,,-yo(vo + v 2) cos[-yok,(z + vot)], (10-b)
dt
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= -eBo--OV;, + eB"-yovY cos[-yok,(z + vot)], (10-c)
cit

and

d-y e v- - - (-V BO cos[-yok.,(z + vot)]. (10-l)
dit mOc ci

Eqs. (10a) and (10b) can be integrated at once to give the exact invariant equations

p. - eBo-yjo z = C. (11)

and

p, + eB~k.-j sin[yok,,(z + vot)] = C,. (12)

A third invariant can be obtained by eliminating the quantity eBw-yovy cos[ok (z + vot)]

between (10-c) and (10-d) and integrating the resulting equation. This invariant is not

required for the derivation of the exact combined differential equation. The appropriate

choice of constants is C, = -eBo-foy zo and CY = 0. The choice of C., which is merely a

matter of notation, reflects the expectation that the motion is oscillatory. As will be seen

more clearly below, zo is a guiding-center coordinate. The choice of CY is motivated by

the requirement that the motion not contain a secular drift. The invariant equations can

be used, in combination with (9), to obtain an expression for -y as a function of z, v, and

t. The result is

1 (-c 2  ) (13)'2 [1 + c-2(62 +,2)](

In this expression the quantities ', and 6, are given by the expressions

X= yv, = wO(z - zO), (14)

and

Y= yv = -21/ 2 acsin[yok,,,(z + vot)], (15)
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where

wo = eBo/-yomo (16)

is the gyro-frequency in the uniform magnetic field and

a, = 2-' 2 (eB,/mock,) (17)

is the normalized r.m.s. vector potential of the wiggler field. Eqs. (14) and (15) are alter-

native expressions of the invariant equations, (11) and (12), with the particular choice of

constants stated above.

In order to obtain a second-order differential equation which describes the dynamics

of single-particle motion, it is necessary to express the z-component equation of motion

(10-c) in terms of dvz/dt instead of dpz/dt. This is accomplished by use of (10-d). The

result is

, Wo{Z - B,21 + Viv, cos[yok,(z + vot)]}. (18)

Eq. (18) is transformed into the desired equation by expressing v. and v, in terms

of z, vZ and t through use of (14) and (15) and introduction of the identity 7) = dz/dt.

The result is

d 2 w 1 Biw2 y vov,
d 2 + (Z - Zo) - -y + sin[2ok,(z + vot)]. ([9)
dt2 (-o2= 2 B~ky2k + c2

Eq. (19), supplemented by (13)-(15) and the identity vz = dz/dt, is the desired second-

order differential equation for z as a function of t. Henceforth it will be referred to as the

exact combined differential equation. It is an equation of the form

d2 z (20
d 2Z - F (z, dz, t). (20)
dt2  ~ ~d
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Solutions of this equation which are acceptable as a basis for the linear stability

analysis of the cross-field FEL (not necessarily operating in the resonant mode) must

exhibit suitable periodicity when transformed into the laboratory frame. It is necessary

that deviations of ze = zI(tt) from uniform motion with drift speed vo be periodic with the

wiggler period or an integral submultiple of it. A precise statement of this requirement is

the following: the quantity {[z(t)-z(O)]-vote} is required to be a periodic function of te

with period T = L'/vo, where L' = 27r/nk.,, n = 1,2,3,-, and ze(O) is unrestricted.

The transformation of this requirement to the drift frame yields a condition which solutions

of the exact combined differential equation must satisfy in order to be acceptable as a basis

for linear stability analysis of the cross-field FEL. The Lorentz transformation from the

laboratory frame to the drift frame is

x e, y = y1, (21)

Z = yo(z - vote), (22)

and

t = -yo(te - voze/c 2 ). (23)

A laboratory frame interval (L', T') corresponds to a drift frame interval (Lu, T2), where

L,, = 0 and T, = T/-yo = 27r/n-yokvo. Therefore, solutions of the exact combined

differential equation which are acceptable for the linear stability analysis of the cross-field

FEL must be periodic with period 27r/wn, where

W,=nyokvo , n=1,2,3,. (24)

An approximation to the exact combined differential equation which is a weakly non-

linear oscillator that is weakly driven by a wave-harmonic excitation will be developed it
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the Section 3. The resonance conditions for this equation will be shown in Section 4 to be

[see (49)]

where [(43)]

Wd 2-yokvo

is the Lorentz transformed frequency of the effective driving force of (19) in the limit of

small-amplitude excitation, and [(36)]

U* = wo/(1 + a;;)1/2

is the harmonic frequency of (17) in the limit of small-amplitude excitation. It is close to

the frequency of weakly nonlinear resonant solutions of the equation.

It is necessary that the frequency of weakly nonlinear resonant solutions be close to a

frequency which is allowable under the periodicity condition, i.e.,

* w. (25)

Examination of the periodicity condition (24) and the resonance condition [see (49)] dis-

closes the allowable combinations of values of m and n. The condition which results

is

mn = 2. (26)

This relation shows that, among resonant solutions, only the fundamental resonance (m =

1) and the first subharmonic resonance (rn = 2) are acceptable as a basis for the linear

stability analysis of the cross-field FEL. The spatial periodicity in the laboratory frame of
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the fundamental resonance (m = 1) is the first integral subharmonic of the wiggler period

(L' = r/k). The spatial periodicity in the laboratory frame of the first subharmonic

resonance (m = 2) is the wiggler period (L' = 27r/h).

3. Approximate combined differential equation

in this section an approximation to the exact combined differential equation is obtained.

It has the form of a weakly nonlinear oscillator that is weakly driven by a wave-harmonic

excitation. It is referred to as the approximate combined differential equation. Because of

the spatial dependence of the wave-harmonic excitation, it is a more complicated equation

with a more extensive structure of resonances than the corresponding equation driven by

a time-harmonic excitation.

The paradigmatic equation of a weakly nonlinear oscillator that is weakly driven near

resonance by a time-harmonic excitation is

d2 x + X dx -- ef sin[(1 + EQ)t + X], (27)
dt2  d)

In this equation E is a smallness parameter (02 < 1), and f and Q are constants of

order one; N is a function of order one; x is a phase constant. Two examples of this

paradigmatic equation are the time-harmonically excited Duffing equation,

d2 X+ x + Ex =f sin[(I + eQ)t + x], (28)
dt 2 + +

and the time-harmonically excited van der Pol equation,

d 2 x dx
+ X = e(1 - X')- + ef sin[(I+ JE)t + x]. (29)

dt 2  dt
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Multiple-scale perturbation theory is capable of providing approximate analytic solutions

of these and similar equations, including the approximate combined differential equation,

near conditions of resonance.

An obvious first step in the process of approximating the exact combined differential

equation is the introduction of the transformed dependent variable

Az = (z - zo). (30)

The significance of the constant zo as a guiding-center coordinate is now clear.

The next step is the development of an approximation of the second term on the

left-hand side of (19), wO-r 2Lz, which includes lowest-order resonant nonlinear terms.

Examination of (13) shows that, if v 2 /c 2 and a , are much less than one, then -Y- 2 can

be approximated by the expansion

2 1 - [c( 2 )] - 2 + . - (31)

where 6, and 6, are given by (14) and (15), respectively. Because there is a practical

possibility that a, may not be much less than one, the quantity c-Y2 ,which formally is

of higher order in (31), may in fact be of lowest order. An alternative approximation to

y is therefore required.

in order to see what that approximation should be, note that the quantity c-22 can

be expressed as

C2-2 = a ,{f - cos[2-yokw(z + vot)]}. (32)

Consider multiplication of (19) term-by-term by the denominator of the expression for -y 2

given in (13). The resulting equation contains a term

dz
-a , cos[2-yokw(z + vot)] dt2
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This term is nonresonant (at the second harmonic of the resonant response) and, accord-

ingly, can be neglected. Therefore -- 2 can be expressed by the approximate relation

C - 2 V 2 )( 3 3 )
1 (1 + X2)

If (1 + a2)--2,62 < I and C- 2v < 1, then 7- 2 can be approximated by

- 2 )- 1 [, + ,b - -
7- m (1 + - (1 +a)-c-' - c 2 v + -]. (34)

Making use of (14) and the relation vz = dAz/dt, it is now possible to give the desired

approximation of wo-r 2 Az, namely

21 Az _ W*2 [ _ _L)2(AZ)2 -- + - - Az, (35)0 ~ ~ 7 2c2 dt

where

v* = wo/(i + a2)1/ 2  (36)

is the harmonic frequency of (19) in the limit of small-amplitude excitation. The second

and third terms on the right-hand side of (35) give rise to cubic nonlinearities, which

contain resonant contributions.

It is necessary for the application of multiple-scale perturbation theory to express

the approximate equation in terms of dimensionless dependent and independent variables

and a smallness parameter. Examination of (35) permits the determinination of those

quantities. The dimensionless dependent variable is

=z 5-, (37)
A

where A is a characteristic amplitude of the motion. The dimensionless independent

variable is

0 wt. (38)
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The smallness parameter is

( e- . (39)

Note that the neglected terms on the right-hand side of (35) are of order '2.

The next steps in the process of approximating the exact combined differential equa-

tion involve the right-hand side of (19): the neglect of vov 2 /c 2 compared with one and the

approximation of -- 2 by (1 + a2 -'. The former approximation is justified because it

contributes a non-resonant term to the equation, which, incidentally, is of order C1/2. The

validity of the latter approximation is predicated on the assumption that the magnitude

of the right-hand side of the equation is of order e. As was shown above, the magnitude

of the difference between -y 2 and (1 + a 2) 1 is of order e.

The equation which results from the introduction into (19) of the approximations

which have been discussed up to this point and the use of the dimensionless variables and

the smallness parameter is

d 2AZ~ daz 2

d~2  + -e (,Z)2 + ( dz = -ef sin(adz + Cdt + to), (40)

in this equation the quantities f, a, W-d, and to are given by the relations

ef =1B yW
2B0 kA'

where f is assumed to be of order one,

a = 2-yok,,A, (42)

~dj - w/w*, where

wd 2-yok'vo, (43)
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is the doppler-shifted frequency of the effective driving force of (19) in the limit of small-

amplitude excitation, and

to = 2-yok.zo. (44)

This is a weakly nonlinear oscillator that is weakly driven by a wave-harmonic excitation.

It is a more complicated equation with a more extensive structure of resonances than the

corresponding equation driven by a time-harmonic excitation.

4. Multiple-Scale Solution of Approximate Equation

In this section multiple-scale perturbation theory is used to obtain lowest-order periodic

solutions of the approximate combined differential equation near the fundamental reso-

nance.

The two-variable expansion of Zz has the form

Uz=uo(To, T) + EUi(To, T) + , (45)

where

T= t (46)

and

T, =(47)

are the fast and slow independent variables, respectively. The derivative with respect to t

is expressed in terms of derivatives with respect to To and T by

d =: C)d- + a (48)
dt DT1  OT1
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It will be shown below [see the discussion following (55)] that the resonant conditions

are given by the equation

Wd(= wUd/w*) =rn + 60-, (49)

where o- is of order one and the values of m which correspond to resonance are 1, 2, 3,. - -

Substitution of the expressions for i/z [(45)] and Wd [(49)] into the approximate com-

bined differential equation (40), use of (46)-(48), and segregation of terms which contain

different powers of e, give the following equations at 0(1) and 0(e), respectively:

a2
2 + I O =0 (50)

aTO2

and

a2 _
2 uo DUO 2

I + fl 1 = -2 +u+ + I O - f sin(auo + mTo + -Ti + io). (51)
0 TT 1&T0 To

The general solution of (51) is

uo = U(Ti) sin[To + k(T 1 )], (52)

where U and 4 are, respectively, the slowly varying amplitude and phase. Substitution of

this expression for uo into the right-hand side of (51) yields the equation

__2 dU / d4 \
(92 + 1) u = 2 dT cos(To + 0) + 2U d + U3 sin(To +

0dT 1  dT1  (o+b

- f sin{[aU sin(To + (k) + m(To + +)] + 4 m}. (53)

In this equation

P =o-Ti - m'P + io (54)
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is the transformed slowly-varying phase. The Fourier expansion of the right-hand side of

(53) in the fast independent variable contains terms which are proportional to exp[±i(To +

(k)]. These terms drive the left-hand side of the equation resonantly and therefore produce

secular terms in ui because the coefficients of exp[±i(To + 0)] are functions of T, only. [i

order that ut/uo be bounded for all To, it is necessary and sufficient that the coefficient

of exp(i(To + 0)] on the right-hand side of (53) vanish. This is the essence of the resonant

multiple-scale theory. Fourier expansion of the last term on the right-hand side of (53)

is effected by means of the Bessel-function identity exp(iq sin7) =z__ Je(q)exp(ieq).

The result is

-f sin{. . .} = ifeifm' JI(aU)et'+m(To+0)

e=-oo
00

2if -m Z Je(aU)e-+mTo++). (55)
1=-00

In the first series on the right-hand side of (55), the desired term corresponds to f-im = .

In the second series, the desired term corresponds to i + m = -1. Examination of these

conditions and (49) shows that, as asserted above, the values of m which correspond to

resonance are m = 1, 2, 3,- . The value m = 1 corresponds to the fundamental resonance.

The condition for the exclusion of secular behavior of ul which is obtained from (53) with

the aid of (55) is

dU d __ _1 1 1_
+i U + -U3 __ife mmJi_m(aU) + ife~ 'mJ-i-m(aU) = 0. (56)

dT1 dT1  2 2 2

Separation of the real and imaginary parts of this equation, use of the Bessel-function

identities 2nJ, = x(J.a- + J,+1 ), 2J,' = Jn-i - J,+,, and J-m (-)"Jm, and (54),
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yields the following pair of equations for the evolution of U(T1) and 0,bm(Ti):

dU .Jr(cxU)
+ (-)rn+lfm sin Vm = 0 (57)

dT1  aU

and

U - OU - mU' + (-)'+fmJ' (aU) cos Om = 0. (58)dTI 2

Davidson' has recently reduced the solution of the coupled set of equations (57) and

(58) to quadrature. This is accomplished by means of an exact invariant of the set. The

evolution of U is determined by an 'energy' conservation equation

I U . 2+ W(U2) = 0,
2 (dT1

where W(U 2 ) is an effective potential. The evolution of U in the general case corresponds

to trapped motion of an equivalent particle between the turning points of the effective

potential. The stationary solutions of (57) and (58), which are obtained by setting the

derivatives with respect to T1 equal to zero, correspond to 'motion' at the bottom of the

effective potential.

In the case of the fundamental resonance, m = 1, the set of equations (57) and (58)

assumes the form

dU+ fJI(aU) sin41 = 0 (59)
dT1 aU

and

U dT- aU - 2 U3 + fJl(aU)cos i1 =0. (60)
dT1 2

Since m = I and eIOl < 1, it follows from (49) that W0 ; Wd. By using this approximate

identity, the definitions of e [(39)], a [(42)], and Wd [(43)], and the condition vo a c, it
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can be shown that

a ~1 ei/2. (61)

In the case of periodic solutions of (40), such as those sought here, the magnitude of U

is a constant and can be chosen for convenience to be equal to one. (This is possible

because A was introduced [in (37)] as an arbitrary constant.) These observations yield

the approximate identity aU ; E'I2 for the value of the argument of the Bessel functions

in (59) and (60). The use of this approximate identity and the Bessel-function identity

1 ( x) 3 (___X)_

2 12. 2 12 .22 .3

makes it possible to approximate the equations (59) and (60) with an error of order e by

the equations

dU 1
d +2 f sin/ 1 = 0 (62)
dT1  2

and

U - U - U3 + f cos4'1 = 0. (63)
dT1  2 2

The stationary solutions of (62) and (63) correspond to lowest-order periodic solutions

of the approximate combined differential equation (40) near the fundamental resonance

wd ~ w*. They are obtained by setting dU/dT and db 1 /dT equal to zero. The equations

which result are

(1/2)f sinV.Io = 0 (64)

and

o-Uo + (1/2)UO3 - (1/2)f cosio = 0, (65)
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where Uo and Oio are the stationary values of U and #'1. Eq. (64) is satisfied by the

values

0= 0 ,(66)

which implies

cos±bio 1. (67)

Substitution of these values of cos Ojo into (65) yields the equation

oUo + (1/2)UO3 -F (1/2)f = 0, (68)

which is a cubic equation in UO. In order to gain insight into the behavior of the stationary

solutions , it is convenient to solve (68) for o as a function of Uo and f [a = a(Uo; f)):

a = 12 f (69)
a g2t 2 Uo (9

Figure 2 gives a typical plot of a as a function of UO for fixed f. There are two branches

of Y(Uo; f), corresponding to 01o = 0 and V10 = 7r.

The stability of the motion described by the two branches of (69) is investigated by

linearizing (62) and (63) about those branches. Let

U = UO + ,U , '0 =,010 + A01. (70)

Expansion of (62) and (63) in powers of z U and A0, and retention of only linear terms

yields

dAU 1 (71)

dT 2

and

(+ 2 )AU - U= 0. (72)

21



If Aa oc exp pT and A' c exp pT1, then p must satisfy the equation

p2 = I + Uj (73)

The motion described by (62) and (63) is linearly stable around the stationary points

U = Uo and ?i = 01o if and only if p2 < 0.

The entirety of the upper branch of o as a function of Uo (Vjo = 0) and that portioti

of the lower branch (01o = ir) with positive slope [0 < Uo < (f/2)1/ 3] correspond to

stable motion. These results are obtained in the following manner. Substitution of the

expression for o, as a function of UO from (69) into (73) yields the following equation for

p2 as a function of Uo:

2 2
PT fU0 . (74)

Inspection of (74) for the upper branch (010 = 0) shows that the entirety of that branch

corresponds to stable motion. Inspection of (74) for the lower branch shows that p2 is a

monotonically increasing function of Uo. Small values of UO correspond to stability; large

values of UO correspond to instability. The condition for marginal stability (p 2 = 0) is

Uo (f/2)1/3. The derivative of u(Uo; f) with respect to Uo is given by the equation

do, I f-- -U0 T (75)
dUo 2 U6

Inpection of this equation in the case of the lower branch indicates that the derivative is

monotonically decreasing. It is positive for small values of UO and negative for large values

of Uo. It vanishes for Uo = (f /2)'/ 3 , which is also the condition for marginal stability of

the lower branch. As asserted above, that portion of the lower branch of o-(Uo; f) with

positive slope [0 < Uo < (f /2)'/ 3] corresponds to stable motion. See Figure 2.
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It is now possible to determine the explicit form of the lowest-order periodic solutions

of the approximate combined differential equation (40). Eqs. (39), (41), (49) (with m = 1),

and (69) constitute a set of four equations in the five unknowns A, e, f , a, and UO. It

is necessary to reduce the number of unknowns to the number of equations. In the case

of periodic solutions of (40), such as those sought here, the magnitude of U is a constant

and can be chosen for convenience to be equal to one. This is possible because, as noted

above, A was introduced [in (37)] as an arbitrary constant. The use of (45)-(47), (49)

(with m = 1), (52), (54), (66), and Uo = 1 yields the following expression in lowest order

for Az:

Az ±sin(vdt+ io). (76)

The only quantity which remains to be determined is A. The set of equations for the

determination of A consists of (39), (41), (49) (with m = 1), and [from (69), with Uo = I J

1 1
0- = - ± I f. (77)

This set can be combined to give the following equation, which is a cubic in ei/2

3/2 -2 1- Wd i/2 _ B2 .YOW = 0. (78)
W1- 2 B 2 kIc

Recall, from (37), that e = (w*A/c) 2 . Positive real solutions of (78) are required.

The use of (30), (37), (38), (44), (49) (with m = 1), and (76) yields the following

expression for z - zo:

z - zo = ±Asin(wdtI + 2-yokw zo). (79)

The components of the velocity of the single-particle motion are now obtained. The z-

component is obtained by differentiation of (79) with respect to t. The result is

V, = ±wdA cos(wdt + 2-y0kwzo). (80)
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The x -component of velocity is obtained from (14) and (79). The factor -y-' is replaced

by its lowest-order approximation, (1 + a )1/2, [see (33)] and use is made of (36). The

result is

= tw* A sin(wzt + 2-yokRzo). (81)

This equation can be integrated to give

X - XO = -F(w*/wd)Acos(wdt + 2-yokzo), (82)

where xO is a guiding-center coordinate. The y-component of velocity is assumed to be

negligible in cases of interest.

5. Vlasov and Fluid Equilibrium Results

In this section the orbits which have been obtained are expressed in an approximate form

suitable for use in linearized Vlasov stability analysis. They are used to obtain Vlasov

distribution functions which correspond to kinetic equilibria that are uniform and nonuni-

form (across the anode-cathode gap). Appropriate moments of these distribution functions

yield corresponding fluid equilibria.

The orbits (79)-(82) are not in a functional form which is appropriate for linear Vlasov

stability analysis. The appropriate functional form is

z'I = ,'(z, U, t, t') , ' = V'(, (E ,U t, t'). (83)

Since the magnitude of z - zo is A, the error committed in replacing zo by z in the

argument of the trigonometric functions in (78)-(82) is of order E1/2. [See (42) and (61).]

With this approximation, it is possible to place the orbits in a form which is appropriate
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for linear Vlasov stability analysis. The results are

Z' - z = ±A[sin(wdt' + 2-yokz) - sin(wdt + 2-yoksz)], (84)

V' -A[Cs(Wt + 2yok z) - cos(wdt + 2-yokz)], (85)

V' - = tw*A[sin(wLdt' + 2-y0kz) - sin(wdt + 2-yoksz)], (86)

and

' - = T(WO*/wd)A[COS(Wdt' + 2-yokz) - COS(wdt + 2-yokz)]. (87)

Equilibrium Vlasov distribution functions are functions of invariants of single-particle

motion in external fields. In the present case, appropriate invariants are obtained by

expressing Eqs. (79)-(82) in the form of functions of dynamical variables set equal to

zero. Cold equilibrium distribution functions contain suitable combinations of Dirac delta

functions (more accurately distributions) whose arguments are these functions of dynamical

variables.

The formal statement of the uniform-density Vlasov distribution function is

ft (z, vX, vZ, t) = no dzo6[z - zo F A sin(wdt + 2yo kzo)]

x b[v, F w* A sin(wdt + 2kyo kzo)]6[vz T Wd A cos(wdt +2yok~zo)], (88)

where no is a constant. This statement of the distribution function is not particularly

useful because of the presence of the integral with respect to zo. As in the case of the

orbits, the error committed in replacing zo by z in the argument of the trigonometric

functions in (88) is of order ei/2. With this approximation, the integral in (88) can be

performed. The distribution function which results is

f6 (z, v., vZt) = nob[vF vw*Asin(wdt + 2okA z)S[v, {w dAcos(wdt + 2-yok,,z). (89)

25



The zeroth velocity moment of this distribution function yields the uniform fluid

number density N(z,t) = no. The ratio of the first velocity moment to the number

density is the fluid velocity of the cold-fluid equilibrium:

V,(z, t) ±w A sin(w t + 2yokz) (90)

and

V(z, t) ±wd A cos(wdt + 2yokwz). (91)

The formal statement of a Vlasov distribution function which corresponds to a simple

(perhaps the simplest) kinetic equilibrium that is nonuniform (across the anode-cathode

gap) is

d12

fb (x, z, v, vZ , t) = no/ dxob[x - Xo ± (wg /wd)A cos(wdt + 2-yokmz)]

x 6[v, : w*A sin(wdt + 2-y0k,,z)|[v F wadA cos(wdt + 2yok,z)]. (92)

In presenting (92), an initial approximation corresponding to the progression from (88) to

(89) has already been incorporated. Performance of the integral in (92) yields the result

fO(x, z, v, =t) no{ [x + d/2 ± (w*/wd)A cos(wdt + 2yokz)]

- 9[x - d/2 ± (w*/Wd)A cos(wdt + 2-yoksz)]}

x 6[v F w* A sin(wdt + 2-yok,z)]6[v2 T w4dAcos(wdt + 2-yokez)}. (93)

The symbol 9 denotes the unit step function. This distribution function corresponds to a

distribution of guiding centers that is uniform in z in the region -oo < z < oo and in x

in the region -d/2 < x < d/2.
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The nonuniform fluid number density N(x, z, t) which results from this distribution

function is equal to no when

-d/2 < x ± (w*/wd)A cos(wdt + 2yokz) < d/2, (94)

atid is equal to zero otherwise. The nonuniform fluid velocity components Vx(.V, z, t) and

V2(Z,(z, t) are equal to the right-hand sides of (90) and (91), respectively, when (94) is

satisfied, and are equal to zero otherwise.

6. Summary and Conclusions

In this section the results of this work are summarized.

The external fields of a planar cross-field FEL [(1)] in the laboratory frame and the

equations of motion of a relativistic electron in those fields [(6)-(7)] are expressed in the

Et x Bo drift frame moving with velocity UJo [(2)] by (5) and (10), respectively. Figure

1 shows the components of the fields in the laboratory and drift frames and the Lorentz

transformation between the frames.

Two of the component equations of motion are integrated directly to yield exact invari-

ants [(11)-(12)], which are placed into a form [(14)-(15)] suitable for the problem at hand

by particular choices of the constants. The invariant equations are used, in combination

with the remaining component equation of motion, to obtain a second-order differential

equation for the component of electron position in the axial direction of the anode-cathode

gap, z, as a function of time. This equation is referred to as the exact combined differential

equation. [(19), supplemented by (13)-(15) and introduction of the identity v2 = dz/dt.j

Solutions of the equation which are acceptable as a basis for the linear stability analysis
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of the cross-field FEL must be periodic with the wiggler period or an integral submultiple

of it when transformed into the laboratory frame. This requirement leads to a condition

[(26)1 which allows only the fundamental and first subharmonic resonant solutions of the

exact combined differential equation.

An approximation [(40)] to the exact combined differential equation is obtained. It

has the form of a weakly nonlinear oscillator that is weakly driven by a wave-harmonic

excitation. It is referred to as the approximate combined differential equation. The depen-

dent variable of this equation is a dimensionless difference, Az, [(37)] between z and its

guiding center, zo. Its derivation involves the approximation of the quantity -y 2 [(13)] by

neglect of a nonresonant quantity, to yield (33), and a weakly nonlinear expansion of that

approximation. It involves also a weakly nonlinear expansion of the restoring force term

of (19) and neglect of nonresonant terms on the right-hand side of (40). The derivation

yields a renormalized harmonic frequency wo [(36)1, a dimensionless independent variable

F [(38)], a smallness parameter c [(39)], and other relevant parameters [(41)-(44)].

Multiple-scale perturbation theory is used to obtain lowest-order periodic solutions

of the approximate combined differential equation near the fundamental resonance. The

derivation involves the introduction of fast and slow independent variables [(46)-(47), re-

spectively], the expansion to order e of the dependent variable as a function of the slow

and fast variables, and the introduction of resonance conditions [(49)]. Introduction of

an harmonic ansatz for L._z with slowly varying amplitude and phase and separation of

contributions at zero and first order in e yields at first order an harmonic oscillator driven

by combinations of zero-order quantities [(53)]. Introduction of the resonance conditioiis
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[(43)] and Bessel-function expansion of the wave-harmonic driving term [(55)1 permits the

identification of a combination of terms which drive the harmonic oscillator resonantly

and therefore produce secular terms in the solution. Setting this combination of terms

equal to zero and separation of real and imaginary parts yields a pair of coupled first-order

differential equations [(57) and (58)] for the evolution of the slowly varying amplitude and

phase. In the case of the fundamental resonance, m = 1, this set assumes the form (59)

and (60) and the Bessel function therein can be replaced by their small-amplitude approx-

imations. The resulting set consists of (62) and (63). Stationery solutions of (62) and (63)

are obtained by setting the first-derivative terms to zero and solving the resulting algebraic

equations for amplitude and phase. Two branches are obtained. The linear stability of

the branches is determined by linearizing (62) and (63) about those branches. One of the

branches is stable everywhere. A part of the other branch is stable. The regions of stability

are shown in Figure 2.

The periodic orbits near the fundamental resonance are given in dimensional form by

(79) and (82), with A determined from the real, positive, root of the cubic equation (78).

The orbit corresponding to the upper sign in (79) and (82) is stable for all values of the

mismatch between Wd and w*. The orbit corresponding to the lower sign is stable for values

of the amplitude which correspond to the condition discussed below (73). The components

of particle velocity corresponding to (79) and (82) are, respectively, (80) and (81). The

validity of these approximate results depend on the satisfaction of the assumptions made

in obtaining them.

The approximate form of the orbits suitable for use in linearized Vlasov stability
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analysis are given in (84)-(87). Vlasov distribution functions which correspond to uniform

and simple nonuniform kinetic equilibria are given, respectively, in (89) and (93). The

components of fluid velocity corresponding to the uniform kinetic equilibrium are given

in (90) and (91). The components of fluid velocity corresponding to the uniform kinetic

equilibrium are equal to the right-hand sides of (90) and (91) when the condition (94) is

satisfied, and are equal to zero otherwise.
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FIGURE CAPTIONS

1. Electric and magnetic fields in the laboratory (f) and EO x Bi drift frames, and

the relation between the frames. In the figure, but not in the text, the uniform and

nonuniform, time-dependent parts of the magnetic field in the drift frame have beeni

denoted for the sake of clarity by B 0 and B, respectively.

2. Dimensionless mismatch o- as a function of dimensionless amplitude U0 of lowest-order

periodic solution of approximate combined differential equation for fixed dimensionless

amplitude f . Linearly stable and unstable regions of periodic solutions for stationary

valules of transformed slowly varying phase are indicated.
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