37,228 research outputs found
A study of the application of microwave techniques to the measurement of solid propellant burning rates Progress report, 1 Sep. 1966 - 31 Aug. 1967
Microwave techniques for measurement of solid rocket propellant burning rate
Experimental performance of a 16.10-centimeter-tip-diameter sweptback centrifugal compressor designed for a 6:1 pressure ratio
A backswept impeller with design mass flow rate of 1.033 kg/sec was tested with both a vaned diffuser and a vaneless diffuser to establish stage and impeller characteristics. Design stage pressure ratio of 5.9:1 was attained at a flow slightly lower than the design value. Flow range at design speed was 6 percent of choking flow. Impeller axial tip clearance at design speed was varied to determine effect on stage and impeller performance
Experimental performance of a 13.65-centimeter-tip-diameter tandem-bladed sweptback centrifugal compressor designed for a pressure ratio of 6
A 13.65 cm tip diameter backswept centrifugal impeller having a tandem inducer and a design mass flow rate of 0.907 kg/sec was experimentally investigated to establish stage and impeller characteristics. Tests were conducted with both a cascade diffuser and a vaneless diffuser. A pressure ratio of 5.9 was obtained near surge for the smallest clearance tested. Flow range at design speed was 6.3 percent for the smallest clearance test. Impeller exit to shroud axial clearance at design speed was varied to determine the effect on stage and impeller performance
Fracture mechanics approach to design analysis of notches, steps and internal cut-outs in planar components
A new approach to the assessment and optimization of geometric stress-concentrating features is proposed on the basis of the correspondence between sharp crack or corner stressfield intensity factors and conventional elastic stress concentration factors (SCFs) for radiused transitions. This approach complements the application of finite element analysis (FEA) and the use of standard SCF data from the literature. The method makes it possible to develop closed-form solutions for SCFs in cases where corresponding solutions for the sharp crack geometries exist. This is helpful in the context of design optimization. The analytical basis of the correspondence is shown, together with the limits on applicability where stress-free boundaries near the stress concentrating feature are present or adjacent features interact. Examples are given which compare parametric results derived from FEA with closed-form solutions based on the proposed method. New information is given on the stress state at a 90° corner or width step, where the magnitude of the stress field intensity is related to that of the corresponding crack geometry. This correspondence enables the user to extend further the application of crack-tip stress-field intensity information to square-cornered steps, external U-grooves, and internal cut-outs
A low energy electron magnetometer
The concept of a highly sensitive magnetometer based on the deflection of low energy electron beams in magnetic fields is analyzed. Because of its extremely low mass and consequently high e/m ratio, a low energy electron is easily deflected in a magnetic field, thus providing a basis for very low field measurement. Calculations for a specific instrument design indicate that a low energy electron magnetometer (LEEM) can measure magnetic fields as low as 1000 nT. The anticipated performance of LEEM is compared with that of the existing high resolution magnetometers in selected applications. The fast response time of LEEM makes it especially attractive as a potential instrument for magnetic signature analysis in large engineering systems
Building Health Equity One Institution at a Time: The Research Infrastructure in Minority Institutions Project
Developing a well-trained workforce interested in, and prepared for, conducting health equity research is an important national priority. Scientists from Minority-Serving Institutions (MSIs) bring unique perspectives and experiences with racial, ethnic and social inequities in health and health status but often lack access to training and mentoring opportunities, which is crucial for increasing the diverse pool of investigators who are adequately prepared to conduct health disparities research and to compete for National Institutes of Health research funding. The focus of the California State University, Long Beach (CSULB) Research Infrastructure in Minority Institutions (RIMI) Project was to: (a) enhance CSULB’s infrastructure and research capacity, (b) conduct applied community health research on health conditions disproportionately affecting disadvantaged populations, and (c) support faculty to embark on careers in reducing health disparities. Faculty received training, mentorship, and release time support to participate in research-related activities. Select faculty also received funding to conduct a two-year health disparities research project. Within a relatively short period of time, the RIMI Project made important strides toward strengthening the research infrastructure at CSULB by enhancing faculty capacity, improving research utilization to address health disparities, and strengthening campus and community collaborations. MSIs are encouraged to apply for opportunities to build their institution’s research capacity. The lessons learned from this project may be used as a guide for other teaching institutions that have the goal to develop minority faculty researchers
The Origin of Soft X-rays in DQ Herculis
DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable
containing a magnetic white dwarf primary. The accretion disk is thought to
block our line of sight to the white dwarf at all orbital phases due to its
extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her
with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed
Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk
of the X-rays are from a point-like source and exhibit a shallow partial
eclipse. We interpret this as due to scattering of the unseen central X-ray
source, probably in an accretion disk wind. At the same time, we observe what
appear to be weak extended X-ray features around DQ Her, which we interpret as
an X-ray emitting knot in the nova shell.Comment: 18 pages including 4 figures, accepted for publication in
Astrphyisical Journa
Fermi LAT Gamma-ray Detections of Classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015
We report the Fermi Large Area Telescope (LAT) detections of high-energy
(>100 MeV) gamma-ray emission from two recent optically bright classical novae,
V1369 Centauri 2013 and V5668 Sagittarii 2015. At early times, Fermi
target-of-opportunity observations prompted by their optical discoveries
provided enhanced LAT exposure that enabled the detections of gamma-ray onsets
beginning ~2 days after their first optical peaks. Significant gamma-ray
emission was found extending to 39-55 days after their initial LAT detections,
with systematically fainter and longer duration emission compared to previous
gamma-ray detected classical novae. These novae were distinguished by multiple
bright optical peaks that encompassed the timespans of the observed gamma rays.
The gamma-ray light curves and spectra of the two novae are presented along
with representative hadronic and leptonic models, and comparisons to other
novae detected by the LAT are discussed.Comment: 13 pages, 6 figures, 4 tables, ApJ accepte
- …