952 research outputs found

    Intensity of Coulomb Interaction between quasiparticles in diffusive metallic wires

    Get PDF
    The energy dependence and intensity of Coulomb interaction between quasiparticles in metallic wires is obtained from two different methods: determination of the temperature dependence of the phase coherence time from the magnetoresistance, and measurements of the energy distribution function in out-of-equilibrium situations. In both types of experiment, the energy dependence of the Coulomb interaction is found to be in excellent agreement with theoretical predictions. In contrast, the intensity of the interaction agrees closely with theory only with the first method, whereas an important discrepancy is found using the second one. Different explanations are proposed, and results of a test experiment are presented.Comment: Submitted to Solid States Communication

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083

    Helix vs. Sheet Formation in a Small Peptide

    Full text link
    Segments with the amino acid sequence EKAYLRT appear in natural occurring proteins both in α\alpha-helices and β\beta-sheets. For this reason, we have use this peptide to study how secondary structure formation in proteins depends on the local environment. Our data rely on multicanonical Monte Carlo simulations where the interactions among all atoms are taken into account. Results in gas phase are compared with that in an implicit solvent. We find that both in gas phase and solvated EKAYLRT forms an α\alpha-helix when not interacting with other molecules. However, in the vicinity of a β\beta-strand, the peptide forms a β\beta-strand. Because of this change in secondary structure our peptide may provide a simple model for the αβ\alpha \to \beta transition that is supposedly related to the outbreak of Prion diseases and similar illnesses.Comment: to appear in Physical Review

    Electron Dephasing in Mesoscopic Metal Wires

    Full text link
    The low-temperature behavior of the electron phase coherence time, τϕ\tau_{\phi}, in mesoscopic metal wires has been a subject of controversy recently. Whereas theory predicts that τϕ(T)\tau_{\phi}(T) in narrow wires should increase as T2/3T^{-2/3} as the temperature TT is lowered, many samples exhibit a saturation of τϕ\tau_{\phi} below about 1 K. We review here the experiments we have performed recently to address this issue. In particular we emphasize that in sufficiently pure Ag and Au samples we observe no saturation of τϕ\tau_{\phi} down to our base temperature of 40 mK. In addition, the measured magnitude of τϕ\tau_{\phi} is in excellent quantitative agreement with the prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We discuss possible explanations why saturation of τϕ\tau_{\phi} is observed in many other samples measured in our laboratory and elsewhere, and answer the criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Ab-initio theory of NMR chemical shifts in solids and liquids

    Full text link
    We present a theory for the ab-initio computation of NMR chemical shifts (sigma) in condensed matter systems, using periodic boundary conditions. Our approach can be applied to periodic systems such as crystals, surfaces, or polymers and, with a super-cell technique, to non-periodic systems such as amorphous materials, liquids, or solids with defects. We have computed the hydrogen sigma for a set of free molecules, for an ionic crystal, LiH, and for a H-bonded crystal, HF, using density functional theory in the local density approximation. The results are in excellent agreement with experimental data.Comment: to appear in Physical Review Letter

    Dephasing of Electrons in Mesoscopic Metal Wires

    Full text link
    We have extracted the phase coherence time τϕ\tau_{\phi} of electronic quasiparticles from the low field magnetoresistance of weakly disordered wires made of silver, copper and gold. In samples fabricated using our purest silver and gold sources, τϕ\tau_{\phi} increases as T2/3T^{-2/3} when the temperature TT is reduced, as predicted by the theory of electron-electron interactions in diffusive wires. In contrast, samples made of a silver source material of lesser purity or of copper exhibit an apparent saturation of τϕ\tau_{\phi} starting between 0.1 and 1 K down to our base temperature of 40 mK. By implanting manganese impurities in silver wires, we show that even a minute concentration of magnetic impurities having a small Kondo temperature can lead to a quasi saturation of τϕ\tau_{\phi} over a broad temperature range, while the resistance increase expected from the Kondo effect remains hidden by a large background. We also measured the conductance of Aharonov-Bohm rings fabricated using a very pure copper source and found that the amplitude of the h/eh/e conductance oscillations increases strongly with magnetic field. This set of experiments suggests that the frequently observed ``saturation'' of τϕ\tau_{\phi} in weakly disordered metallic thin films can be attributed to spin-flip scattering from extremely dilute magnetic impurities, at a level undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review

    Validating a generic cancer consumer quality index in eight European countries, patient reported experiences and the influence of cultural differences

    Get PDF
    BackgroundTaking patient centeredness into account is important in healthcare. The European Cancer Consumer Quality Index (ECCQI) is a validated tool for international benchmarking of patient experiences and satisfaction.This study aimed to further validate the ECCQI in larger and more uniform groups of high volume tumours such as breast and prostate cancer. A second objective was the verification of the influence of cultural factors of the country to determine its possible use in international benchmarking.MethodsData from two survey studies in eight European countries were combined. Socio-demographic correlations were analysed with Kruskall-Wallis and Mann-Whitney tests. Cronbach's alpha was calculated to validate internal consistency. Influences of masculinity (MAS), power distance (PD) and uncertainty avoidance (UA) were determined by linear regression analysis in a general model and subgroup models.ResultsA total of 1322 surveys were included in the analysis (1093 breast- and 348 prostate cancer patients). Cronbach's alpha was good (alpha >= 0.7) or acceptable (0.5Peer reviewe

    Electronic Transport in a Three-dimensional Network of 1-D Bismuth Quantum Wires

    Full text link
    The resistance R of a high density network of 6 nm diameter Bi wires in porous Vycor glass is studied in order to observe its expected semiconductor behavior. R increases from 300 K down to 0.3 K. Below 4 K, where R varies approximately as ln(1/T), the order-of-magnitude of the resistance rise, as well as the behavior of the magnetoresistance are consistent with localization and electron-electron interaction theories of a one-dimensional disordered conductor in the presence of strong spin-orbit scattering. We show that this behaviour and the surface-enhanced carrier density may mask the proposed semimetal-to-semiconductor transition for quantum Bi wires.Comment: 19 pages total, 4 figures; accepted for publication in Phys. Rev.

    Ultralow Temperature Studies of Nanometer Size Semiconductor Devices

    Get PDF
    Contains a description on one research project.Joint Services Electronics Program DAAL03-89-C-000

    Strong localization of electrons in quasi-one-dimensional conductors

    Full text link
    We report on the experimental study of electron transport in sub-micron-wide ''wires'' fabricated from Si δ\delta -doped GaAs. These quasi-one-dimensional (Q1D) conductors demonstrate the crossover from weak to strong localization with decreasing the temperature. On the insulating side of the crossover, the resistance has been measured as a function of temperature, magnetic field, and applied voltage for different values of the electron concentration, which was varied by applying the gate voltage. The activation temperature dependence of the resistance has been observed with the activation energy close to the mean energy spacing of electron states within the localization domain. The study of non-linearity of the current-voltage characteristics provides information on the distance between the critical hops which govern the resistance of Q1D conductors in the strong localization (SL) regime. We observe the exponentially strong negative magnetoresistance; this orbital magnetoresistance is due to the universal magnetic-field dependence of the localization length in Q1D conductors. The method of measuring of the single-particle density of states (DoS) in the SL regime has been suggested. Our data indicate that there is a minimum of DoS at the Fermi level due to the long-range Coulomb interaction.Comment: 12 pages, 11 figures; the final version to appear in Phys. Rev.
    corecore