85 research outputs found

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: A collaborative multi-modal study

    Full text link
    Mouse models of Alzheimer s disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-Adults (6 months (m)) to mid-(12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-Type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (A) and [18F]ASEM (7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, A, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected A accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. A plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to A plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the A plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-Acetyl-Aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and-31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD

    Neurite density is reduced in the presymptomatic phase of C9orf72 disease

    Get PDF
    OBJECTIVE: To assess the added value of neurite orientation dispersion and density imaging (NODDI) compared with conventional diffusion tensor imaging (DTI) and anatomical MRI to detect changes in presymptomatic carriers of chromosome 9 open reading frame 72 (C9orf72) mutation. METHODS: The PREV-DEMALS (Predict to Prevent Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis) study is a prospective, multicentre, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Sixty-seven participants (38 presymptomatic C9orf72 mutation carriers (C9+) and 29 non-carriers (C9-)) were included in the present cross-sectional study. Each participant underwent one single-shell, multishell diffusion MRI and three-dimensional T1-weighted MRI. Volumetric measures, DTI and NODDI metrics were calculated within regions of interest. Differences in white matter integrity, grey matter volume and free water fraction between C9+ and C9- individuals were assessed using linear mixed-effects models. RESULTS: Compared with C9-, C9+ demonstrated white matter abnormalities in 10 tracts with neurite density index and only 5 tracts with DTI metrics. Effect size was significantly higher for the neurite density index than for DTI metrics in two tracts. No tract had a significantly higher effect size for DTI than for NODDI. For grey matter cortical analysis, free water fraction was increased in 13 regions in C9+, whereas 11 regions displayed volumetric atrophy. CONCLUSIONS: NODDI provides higher sensitivity and greater tissue specificity compared with conventional DTI for identifying white matter abnormalities in the presymptomatic C9orf72 carriers. Our results encourage the use of neurite density as a biomarker of the preclinical phase. TRIAL REGISTRATION NUMBER: NCT02590276

    Glycans in Sera of Amyotrophic Lateral Sclerosis Patients and Their Role in Killing Neuronal Cells

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N297-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N297-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage

    Technology generation to dissemination:lessons learned from the tef improvement project

    Get PDF
    Indigenous crops also known as orphan crops are key contributors to food security, which is becoming increasingly vulnerable with the current trend of population growth and climate change. They have the major advantage that they fit well into the general socio-economic and ecological context of developing world agriculture. However, most indigenous crops did not benefit from the Green Revolution, which dramatically increased the yield of major crops such as wheat and rice. Here, we describe the Tef Improvement Project, which employs both conventional- and molecular-breeding techniques to improve tef\u2014an orphan crop important to the food security in the Horn of Africa, a region of the world with recurring devastating famines. We have established an efficient pipeline to bring improved tef lines from the laboratory to the farmers of Ethiopia. Of critical importance to the long-term success of this project is the cooperation among participants in Ethiopia and Switzerland, including donors, policy makers, research institutions, and farmers. Together, European and African scientists have developed a pipeline using breeding and genomic tools to improve the orphan crop tef and bring new cultivars to the farmers in Ethiopia. We highlight a new variety, Tesfa, developed in this pipeline and possessing a novel and desirable combination of traits. Tesfa\u2019s recent approval for release illustrates the success of the project and marks a milestone as it is the first variety (of many in the pipeline) to be released

    Contextualizing students' alcohol use perceptions and practices within French culture: an analysis of gender and drinking among sport-science college students

    Get PDF
    Although research has examined alcohol consumption and sport in a variety of contexts, there is a paucity of research on gender and gender dynamics among French college students. The present study addresses this gap in the literature by examining alcohol use practices by men and women among a non-probability sample of French sport science students from five different universities in Northern France. We utilized both survey data (N = 534) and in-depth qualitative interviews (n = 16) to provide empirical and theoretical insight into a relatively ubiquitous health concern: the culture of intoxication. Qualitative data were based on students’ perceptions of their own alcohol use; analysis were framed by theoretical conceptions of gender. Survey results indicate gender differences in alcohol consumption wherein men reported a substantially higher frequency and quantity of alcohol use compared to their female peers. Qualitative findings confirm that male privilege and women’s concern for safety, masculine embodiment via alcohol use, gendering of alcohol type, and gender conformity pressures shape gender disparities in alcohol use behavior. Our findings also suggest that health education policy and educational programs focused on alcohol-related health risks need to be designed to take into account gender category and gender orientation

    A CMP-sialic acid transporter cloned from Arabidopsis thaliana

    No full text
    Sialylation of glycans is ubiquitous in vertebrates, but was believed to be absent in plants, arthropods, and fungi. However, recently evidence has been provided for the presence of sialic acid in these evolutionary clades. In addition, homologs of mammalian genes involved in sialylation can be found in the genomes of these taxa and for some Drosophila enzymes, involvement in sialic acid metabolism has been documented. In plant genomes, homologs of sialyltransferase genes have been identified, but there activity could not be confirmed. Several mammalian cell lines exist with defects in the sialylation pathway. One of these is the Chinese hamster ovary cell line Lec2, deficient in CMP-sialic acid transport to the Golgi lumen. These mutants provide the possibility to clone genes by functional complementation. Using expression cloning, we have identified an Arabidopsis thaliana nucleotide sugar transporter that is able to complement the CMP-sialic acid transport deficiency of Lec2 cells. The isolated gene (At5g41760) is a member of the triose-phosphate/nucleotide sugar transporter gene family. Recombinant expression of the gene in yeast and testing in vitro confirmed its ability to transport CMP-sialic acid

    Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line

    No full text
    Nucleotide-sugar transporters (NSTs) form a family of structurally related transmembrane proteins that transport nucleotide-sugars from the cytoplasm to the endoplasmic reticulum and Golgi lumen. In these organelles, activated sugars are substrates for various glycosyltransferases involved in oligo- and polysaccharide biosynthesis. The Arabidopsis thaliana genome contains more than 40 members of this transporter gene family, of which only a few are functionally characterized. In this study, two Arabidopsis UDP-galactose transporter cDNAs (UDP-GalT1 and UDP-GalT2) are isolated by expression cloning using a Chinese hamster ovary cell line (CHO-Lec8) deficient in UDP-galactose transport. The isolated genes show only 21% identity to each other and very limited sequence identity with human and yeast UDP-galactose transporters and other NSTs. Despite this low overall identity, the two proteins clearly belong to the same gene family. Besides complementing Lec8 cells, the two NSTs are shown to transport exclusively UDP-galactose by an in vitro NST assay. The most homologous proteins with known function are plant transporters that locate in the inner chloroplast membrane and transport triose-phosphate, phosphoenolpyruvate, glucose-6-phosphate, and xylulose 5-phosphate. Also, the latter proteins are members of the same family, which therefore has been named the NST/triose-phosphate transporter famil
    • …
    corecore