8,690 research outputs found
Effects of noise upon human information processing
Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation
Nanoclustering of vacancies in thin metal films revealed by x-ray diffuse scattering
doi:10.1063/1.2779097 http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APPLAB000091000009093131000001&idtype=cvips&prog=normal&doi=10.1063/1.2779097The authors report the incorporation of unexpectedly large vacancy clusters into homoepitaxial Ag(001) films. These results, which are for a simple noble metal system, have important implications for understanding the atomic-scale kinetics of surfaces where current models have mostly ignored the role of vacancies. For films grown at 150 K, an average vacancy cluster exhibits a local dilatation volume of 750 Å3, which leads to a 1% compressive strain of the film. Vacancy clusters are observed even for films grown near room temperature. These in situ diffuse x-ray scattering experiments measure the local deformation around the cluster and, therefore, provide conclusive evidence of vacancy clusters.Financial support is gratefully acknowledged from the University of Missouri Research Board, the National Science Foundation under Grant No. DMR0706278, the Petroleum
Research Fund under Grant No. 41792-AC10 P.F.M. and C.K. , the Canim Scientific Group E.H.C. and R.F. , and the Seoul Research and Business Development Program under Grant No. 10583 C.K. . The Advanced Photon Source is supported by the DOE Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. The CAT beam line is
supported through Ames Laboratory, operated for the U.S. DOE by Iowa State University under Contract No. W-7405-Eng-82
Silicon intercalation into the graphene-SiC interface
In this work we use LEEM, XPEEM and XPS to study how the excess Si at the
graphene-vacuum interface reorders itself at high temperatures. We show that
silicon deposited at room temperature onto multilayer graphene films grown on
the SiC(000[`1]) rapidly diffuses to the graphene-SiC interface when heated to
temperatures above 1020. In a sequence of depositions, we have been able to
intercalate ~ 6 ML of Si into the graphene-SiC interface.Comment: 6 pages, 8 figures, submitted to PR
Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment
Graphene stacked in a Bernal configuration (60 degrees relative rotations
between sheets) differs electronically from isolated graphene due to the broken
symmetry introduced by interlayer bonds forming between only one of the two
graphene unit cell atoms. A variety of experiments have shown that non-Bernal
rotations restore this broken symmetry; consequently, these stacking varieties
have been the subject of intensive theoretical interest. Most theories predict
substantial changes in the band structure ranging from the development of a Van
Hove singularity and an angle dependent electron localization that causes the
Fermi velocity to go to zero as the relative rotation angle between sheets goes
to zero. In this work we show by direct measurement that non-Bernal rotations
preserve the graphene symmetry with only a small perturbation due to weak
effective interlayer coupling. We detect neither a Van Hove singularity nor any
significant change in the Fermi velocity. These results suggest significant
problems in our current theoretical understanding of the origins of the band
structure of this material.Comment: 7 pages, 6 figures, submitted to PR
A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene
A blueprint for producing scalable digital graphene electronics has remained
elusive. Current methods to produce semiconducting-metallic graphene networks
all suffer from either stringent lithographic demands that prevent
reproducibility, process-induced disorder in the graphene, or scalability
issues. Using angle resolved photoemission, we have discovered a unique one
dimensional metallic-semiconducting-metallic junction made entirely from
graphene, and produced without chemical functionalization or finite size
patterning. The junction is produced by taking advantage of the inherent,
atomically ordered, substrate-graphene interaction when it is grown on SiC, in
this case when graphene is forced to grow over patterned SiC steps. This
scalable bottomup approach allows us to produce a semiconducting graphene strip
whose width is precisely defined within a few graphene lattice constants, a
level of precision entirely outside modern lithographic limits. The
architecture demonstrated in this work is so robust that variations in the
average electronic band structure of thousands of these patterned ribbons have
little variation over length scales tens of microns long. The semiconducting
graphene has a topologically defined few nanometer wide region with an energy
gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet.
This work demonstrates how the graphene-substrate interaction can be used as a
powerful tool to scalably modify graphene's electronic structure and opens a
new direction in graphene electronics research.Comment: 11 pages, 7 figure
Applying Formal Verification Methods to Pure Rule-Based Programs
Reliability, defined as the guarantee that a program satisfies its specifications, is an important aspect of many applications for which rule-based expert systems are suited. Verification refer to the process used to determine the reliability of the rule-based program. Because past approaches to verification are informal, guarantees of reliability cannot fully be made without severely restricting the system. On the other hand, by constructing formal specifications for a program and showing the program satisfies those specifications, guarantees of reliability can be made. This paper presents an assertional approach to the verification of rule-based programs. The proof logical needed for verification is adopted from one already in use by researchers in concurrent programming. The approach involves using a language called Swarm, and requires one to express program specifications as assertions over the Swarm representation of the program. Among models the employ rule-based notation, Swarm is the first to have an axiomatic proof logic
Wetting-layer transformation for Pb nanocrystals grown on Si(111)
doi:10.1063/1.1812593We present the results of in situ x-ray scattering experiments that investigate the growth of Pb nanocrystalline islands on Si(111). It is conclusively shown that the Pb nanocrystals do not reside on top of a Pb wetting layer. The nucleating Pb nanocrystals transform the highly disordered Pb wetting layer beneath the islands into well-ordered fcc Pb. The surface then consists of fcc Pb islands directly on top of the Si surface with the disordered wetting layer occupying the region between the islands. As the Pb nanocrystals coalesce at higher coverage we observe increasing disorder that is consistent with misfit strain relaxation. These results have important implications for predicting stable Pb island heights
- …