8,690 research outputs found

    Effects of noise upon human information processing

    Get PDF
    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation

    Nanoclustering of vacancies in thin metal films revealed by x-ray diffuse scattering

    Get PDF
    doi:10.1063/1.2779097 http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APPLAB000091000009093131000001&idtype=cvips&prog=normal&doi=10.1063/1.2779097The authors report the incorporation of unexpectedly large vacancy clusters into homoepitaxial Ag(001) films. These results, which are for a simple noble metal system, have important implications for understanding the atomic-scale kinetics of surfaces where current models have mostly ignored the role of vacancies. For films grown at 150 K, an average vacancy cluster exhibits a local dilatation volume of 750 Å3, which leads to a 1% compressive strain of the film. Vacancy clusters are observed even for films grown near room temperature. These in situ diffuse x-ray scattering experiments measure the local deformation around the cluster and, therefore, provide conclusive evidence of vacancy clusters.Financial support is gratefully acknowledged from the University of Missouri Research Board, the National Science Foundation under Grant No. DMR0706278, the Petroleum Research Fund under Grant No. 41792-AC10 P.F.M. and C.K. , the Canim Scientific Group E.H.C. and R.F. , and the Seoul Research and Business Development Program under Grant No. 10583 C.K. . The Advanced Photon Source is supported by the DOE Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. The CAT beam line is supported through Ames Laboratory, operated for the U.S. DOE by Iowa State University under Contract No. W-7405-Eng-82

    Silicon intercalation into the graphene-SiC interface

    Full text link
    In this work we use LEEM, XPEEM and XPS to study how the excess Si at the graphene-vacuum interface reorders itself at high temperatures. We show that silicon deposited at room temperature onto multilayer graphene films grown on the SiC(000[`1]) rapidly diffuses to the graphene-SiC interface when heated to temperatures above 1020. In a sequence of depositions, we have been able to intercalate ~ 6 ML of Si into the graphene-SiC interface.Comment: 6 pages, 8 figures, submitted to PR

    Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment

    Full text link
    Graphene stacked in a Bernal configuration (60 degrees relative rotations between sheets) differs electronically from isolated graphene due to the broken symmetry introduced by interlayer bonds forming between only one of the two graphene unit cell atoms. A variety of experiments have shown that non-Bernal rotations restore this broken symmetry; consequently, these stacking varieties have been the subject of intensive theoretical interest. Most theories predict substantial changes in the band structure ranging from the development of a Van Hove singularity and an angle dependent electron localization that causes the Fermi velocity to go to zero as the relative rotation angle between sheets goes to zero. In this work we show by direct measurement that non-Bernal rotations preserve the graphene symmetry with only a small perturbation due to weak effective interlayer coupling. We detect neither a Van Hove singularity nor any significant change in the Fermi velocity. These results suggest significant problems in our current theoretical understanding of the origins of the band structure of this material.Comment: 7 pages, 6 figures, submitted to PR

    A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene

    Full text link
    A blueprint for producing scalable digital graphene electronics has remained elusive. Current methods to produce semiconducting-metallic graphene networks all suffer from either stringent lithographic demands that prevent reproducibility, process-induced disorder in the graphene, or scalability issues. Using angle resolved photoemission, we have discovered a unique one dimensional metallic-semiconducting-metallic junction made entirely from graphene, and produced without chemical functionalization or finite size patterning. The junction is produced by taking advantage of the inherent, atomically ordered, substrate-graphene interaction when it is grown on SiC, in this case when graphene is forced to grow over patterned SiC steps. This scalable bottomup approach allows us to produce a semiconducting graphene strip whose width is precisely defined within a few graphene lattice constants, a level of precision entirely outside modern lithographic limits. The architecture demonstrated in this work is so robust that variations in the average electronic band structure of thousands of these patterned ribbons have little variation over length scales tens of microns long. The semiconducting graphene has a topologically defined few nanometer wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet. This work demonstrates how the graphene-substrate interaction can be used as a powerful tool to scalably modify graphene's electronic structure and opens a new direction in graphene electronics research.Comment: 11 pages, 7 figure

    Applying Formal Verification Methods to Pure Rule-Based Programs

    Get PDF
    Reliability, defined as the guarantee that a program satisfies its specifications, is an important aspect of many applications for which rule-based expert systems are suited. Verification refer to the process used to determine the reliability of the rule-based program. Because past approaches to verification are informal, guarantees of reliability cannot fully be made without severely restricting the system. On the other hand, by constructing formal specifications for a program and showing the program satisfies those specifications, guarantees of reliability can be made. This paper presents an assertional approach to the verification of rule-based programs. The proof logical needed for verification is adopted from one already in use by researchers in concurrent programming. The approach involves using a language called Swarm, and requires one to express program specifications as assertions over the Swarm representation of the program. Among models the employ rule-based notation, Swarm is the first to have an axiomatic proof logic

    Wetting-layer transformation for Pb nanocrystals grown on Si(111)

    Get PDF
    doi:10.1063/1.1812593We present the results of in situ x-ray scattering experiments that investigate the growth of Pb nanocrystalline islands on Si(111). It is conclusively shown that the Pb nanocrystals do not reside on top of a Pb wetting layer. The nucleating Pb nanocrystals transform the highly disordered Pb wetting layer beneath the islands into well-ordered fcc Pb. The surface then consists of fcc Pb islands directly on top of the Si surface with the disordered wetting layer occupying the region between the islands. As the Pb nanocrystals coalesce at higher coverage we observe increasing disorder that is consistent with misfit strain relaxation. These results have important implications for predicting stable Pb island heights
    • …
    corecore