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Abstract

Reliability, defined as the guarantee that a program satisfies its specifications, is an important
aspect of many applications for which rule-based expert systems are suited. Verification refers to
the process used to determine the reliability of the rule-based program. Because past approaches to
verification are informal, guarantees of reliability cannot fully be made without severely restricting
the system. On the other hand, by constructing formal specifications for a program and showing
the program satisfies those specifications, guarantees of reliability can be made.

This paper presents an assertional approach to the verification of rule-based programs. The
proof logic needed for verification is adopted from one already in use by researchers in concurrent
programming. The approach involves using a language called Swarm, and requires one to express
program specifications as assertions over the Swarm representation of the program. Among models
that employ rule-based notation, Swarm is the first to have an axiomatic proof logic.

*The first and third authors are supported by the Washington University Center for Intelligent Computer Systems,
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1 Introduction

Rule-based expert systems are generally used in applications where all or part of the reasoning
performed by a human expert can be emulated. Such systems can be successful in applications where
reliability, defined as the guarantee that a program satisfies its specifications, is not a dominant
factor. For this reason, often expert systems are used as “voting partners” and require extensive
human interaction or monitoring during execution. However, reliability is a major concern in
applications involving critical decisions and in stand-alone systems. In these domains, expert
systems cannot yet be utilized effectively, even though they may be well suited conceptually.

Reliability requires the wvalidation and verification of an expert system. Validation of expert
systems refers to determining if the specifications of the system accurately represent the knowledge
of an expert in a particular problem domain [22]. Verification is the process of guaranteeing a
system meets the given specifications. In this paper, we concentrate on verification only, and make
the assumption that those specifications of the program that can be expressed formally have already
been validated. We recognize that there exist cases in which the expert’s assessment of the problem
cannot be quantified precisely.

Currently, verifying an expert system is an informal process. The guarantees that can be
made require testing on various aspects of the expert system, such as whether there are cycles or
redundancies in the rules, or inconsistencies in the data [19, 21, 17, 4]. Because of the difficulty
in making guarantees of correct behavior in traditional systems, some approaches to verification
choose to restrict the rules to having single actions and/or only adding to the set of facts, not
deleting [29]. In current approaches, input test cases are generated to exercise the system and to
determine if output results are accurate [5]. Though many input test cases can be generated, there
may still be some cases, not tested, that cause anomalies to occur. If the constraints on the input
are ill-defined, then it is not known when the system may give inaccurate output results. Finally,
many of the algorithms used in testing the expert system are intractable, making it necessary to
use approximation algorithms for most domains. The benefit of such approaches is the automation
capabilities. But this benefit must be weighed against the fact that guarantees for reliability cannot
be fully given.

Formal verification of rule-based programs can make guarantees that the program satisfies a
given set of specifications which define its correct behavior [6, 27, 32]. This paper shows that rule-
based programs may be formally verified using assertional methods and that the proof logic needed
for verification can be adopted from one already in use by researchers in concurrent programming.
The proof logic we will be using was originally developed by Chandy and Misra for UNITY [3],
a concurrency model based on conditional multiple assignment statements to shared variables.
This proof logic was later generalized by Cunningham and Roman [7] for use with Swarm, a
concurrency model based on atomic transactions over a set of tuple-like entities. Because Swarm
uses tuples to represent the entire program state and builds transaction definitions around a rule-
based notation, certain programs written in traditional rule-based programming languages have
direct correspondents in Swarm and may be subjected to formal verification [12]. By using the
Swarm. proof logic, a general approach to proving certain properties of rule-based programs that
utilize tasking and context switching has been developed [11]. Moreover, the Swarm proof logic is
applicable to both sequential and concurrent rule-based programs.

Swarm proofs involve two kinds of program-wide properties: safety properties that guarantee the
program does nothing wrong, and progress properties that guarantee the program does something



useful. Because the development of rule-based programs often involves incomplete knowledge about
the application domain as given by a human expert, there may be improper interactions among
rules that are not readily apparent. With the development process in mind, the main verification
goals addressed by others focus on the general areas of: consistency of information, generation of
correct output, and termination. In order to utilize the verification methodology given in Swarm,
these goals must be reformulated as safety and progress properties to be satisfied by the program.

The goal of verifying consistency includes many issues. It may be referred to as rule incon-
sistency or data inconsistency. McGuire [19] defines the goal of rule inconsistency detection as
checking if contradictory information can be derived from the assumed presence of some set of
facts. The DEVA system [29] uses a generated fact-based scenario to search for rule inconsistency.
The types of rule inconsistency searched for are: the ability to satisfy a pair of rules which conclude
contradictory information, the ability to prove a literal and its explicit negation, and the ability to
prove the existence of a literal and the deletion of the same literal. Waldinger [32] defines the goal
of verifying consistency with respect to the data, in that it should be proven that no input produces
an inconsistent fact-base. Verifying a consistent fact-base involves describing the information that
is conflicting and showing it cannot occur simultaneously. Rushby and Whitehurst [27] give a more
rigorous definition of this view of consistency. They rely on model theory and extend consistency to
require that inputs that are close together should generate outputs that are close together. Swarm
proofs view consistency as a constraint. Therefore, it is expressed as a safety property, which sim-
ply states that information considered conflicting cannot be present in the same program state.
Such descriptions would include but not be restricted to disallowing data and its negation to occur
simultaneously.

A program cannot be considered reliable if the output resulting from the program execution is
inaccurate. In general, to achieve this verification goal, an expert system is provided with a set of
inputs. The outputs it prescribes are compared to the human expert’s response to the same inputs
[22]. Some quantitative analysis is performed to determine if the inputs are close enough to the
expert’s to be considered accurate. Chang et al [4] automatically generate multiple input test cases
and compare the output of the expert system to the expected output. Any discrepancies cause a
revision of the rules. They admit that it is not feasible to generate all possible input test cases.
Therefore, they state input and output constraints on individual components of a system and prove
the output constraints are satisfied given the input constraints. They can perform these proofs by
restricting their rules to Horn clauses, and only allowing addition to the fact-base, not deletion.
To determine if the output of a rule-base program is accurate, we also detail constraints on both
the input and output, and prove that the output generated meets these constraints. This method
allows flexibility in the range of accuracy of the output, but still places quantitative bounds on it.
It is not necessary to restrict the rules to single actions and only additions. The specification of
output constraints requires the use of both safety and progress properties. Safety properties are
involved in characterizing the expected output of a program, while progress properties state the
requirement that the output must be actually produced.

Most rule-based programs are required (by their specifications) to terminate. In previous re-
search, verifying termination for a particular rule-based program can be given only by testing the
program on multiple input test cases. The termination criteria for a program in Swarm is formu-
lated as a progress condition. Progress properties are necessary because a termination state is a
state to occur in the future. It must be shown that this state is eventually reached provided the
program is started in some initial state under certain input constraints.



The verification concerns discussed previously all utilize the program state to determine if the
system is behaving correctly. These can easily be expressed as safety and progress properties,
and be readily proven. Aside from the type of verification goal that involves the behavior of the
program in a particular program state, there is another type of verification goal that involves the
syntactic structure of the rules. Many concerns dealing with the syntactic structure of the rules
of the system, e.g., completeness and redundancy, can also be expressed as safety and progress
properties, but require the introduction of auxiliary variables, for proof purposes.

As the rules of an expert system are developed, experts are consulted and changes are made
according to the experts‘ evaluation of the system. Since rigorous verification is not performed
during the cycle of designing the rules and consulting experts, additional rules or changes to old
rules may cause unnecessary dependencies and destroy useful dependencies. Changes to the data
may also occur without updating the rules to reflect these changes. Completeness and redundancy
are of interest due to this manner in which most large rule-based expert systems are developed. A
complete rule-based system is one in which there are no gaps in the knowledge base that result from
missing rules, unreachable clauses and deadend clauses [21]. A rule is believed missing if there is a
range of possible data values for some attribute, yet the range is not totally covered by the existing
rules. An unreachable clause is one that exists in the knowledge base and can never be utilized
by the current system. A deadend clause contains a condition that can never be instantiated no
matter what data is used with the system. Exhaustive checking for completeness is not tractable
and algorithms have been developed to detect as many of the problems resulting in and from an
incomplete system as feasible. This checking may involve creating a data flow diagram and checking
for the connectedness of all components [21] or looking at all the possible instantiations of rules
in a particular system using logical decision table checking {31]. The Expert System Validation
Associate [30] extends this approach by exploiting knowledge about constraints and dependencies
within the system to eliminate rows and columns from the decision table to make the checking
more feasible.

A rule is redundant if there exists a consequent on the right-hand side of the rule which can
be independently derived without the rule in question being used in the inference process [19].
Problems may arise if there is a program state that can be reached by redundant rules that is
deemed incorrect later in the system’s development. If only one of the redundant rules is altered,
the incorrect state can still be independently derived without using the now altered rule, and it may
go undetected. Verifying the absence of redundancy involves instantiating the system on certain
facts and simulating the inference, as in the process of generate-and-test. McGuire [19] describes
a method called a residue approach, which attempts to derive those test case facts that may cause
redundancy, restricting the checking to a more feasible level.

We believe that the concern with completeness and redundancy is motivated by limitations in
the previous approaches to rule-based program development and are not fundamental problems.
Therefore a systematic formal approach will eliminate the need for the current algorithmic checks.
Proofs of completeness and lack of redundancy are not addressed in this paper because they have
distinct objectives that diverge from the verification goals we have considered.

Section 2 gives the notation for rule-based programs in Swarm. Next, Section 3 introduces
a sample program, and its representation in Swarm. Section 4 describes the method of formal
verification used in this paper. The actual verification of the sample program begins in Section 5
by defining what is meant by the structural and behavioral constraints of a program and giving an
example proof of such constraints related to our sample program. Section 6 details how consistency



is viewed and gives an example proof in relation to the sample program. Sections 7 and 8 are
concerned with verifying the output of a program. Section 9 discusses the formulation of the
termination criteria of a Swarm program and its proof for the sample program. Section 10 presents
the related work in the area of formal verification of rule-based programs. Section 11 contains a
brief summary and conclusion.

2 Notation

Swarm belongs to a class of languages and models that use tuple-based communication. Other
languages and models in this class are Linda [2], Associons [24], GAMMA [1], and Tuple Space
Smalltalk [18]. There are many important features of Swarm that make it amenable to verifying
rule-based programs. First, Swarm provides a number of constructs used by rule-based program-
ming languages. One such construct is content-based addressing of data. Another construct is that
transactions in Swarm act like rules in that a successful query results in changes to a database
of content-addressable entities. Swarm also provides an inference mechanism to cycle through the
execution of multiple rules. Usual rule-based programming constructs such as context switching or
tasking can easily be represented in Swarm.

There are important differences between Swarm and traditional rule-based programming lan-
guages, such as OPS5 [9]. First, and most important, Swarm provides an assertional proof logic
which can be used to verify rule-based programs. Swarm was developed for research in concurrent
programming. Thus, control over serial execution in the form of conflict resolution is not directly
available in Swarm. At this time, conflict resolution must be made explicit within the transaction
queries. If conflict resolution cannot be made explicit, the program must be shown to meet the in-
tended goals of the desired conflict resolution strategy. Transactions in Swarm are dynamic. Hence,
all possible transactions may not be available for execution at all times, as rules are in a rule-based
program. Also, transactions are represented by a class name which makes proving properties about
their actions easier.

2.1 Working Memory and Production Memory

The Swarm dataspace is partitioned into two parts®. The tuple space or working memory (WM)
contains a set of tuples or working memory elements (WMEs) of the form

class(al,a2,...,an)

where class is the class name of the tuple and al, ..., an are non-variable attribute values, i.e.,
WMEs are grounded.

The transaction space or production memory consists of a set of transactions that indicate
possible actions to be taken by the program. Each transaction may be viewed as a parameterized
rule. A simple transaction has the form

T(i) = LHS — RHS

3There is actually another partition in the dataspace called the synchrony relation, but it is not utilized for this
paper.



where T is the class name of the transaction and i is an attribute value of that class. The LHS is
made up of a conjunction of condition elements (CEs) and the RHS is made up of action elements
(AEs). Every CE represents a pattern or template matched against WMEs. A positive CE is
satisfied when there exists a matching WME. A negative CE succeeds when no matching WME
can be found. Every AF is made up of WMEs and specifies modifications to WM. Positive AEs add
to WM and negative AEs delete from WM. In Swarm, trausactions can be defined without being
in the transaction space. Swarm makes a distinction between the definition of a transaction and its
existence. Only transactions that exist in the transaction space may be executed. For example, the
transaction T(i) may be defined, but like a WME, T(i) must be grounded (by instantiating i) if the
transaction is fo be in the transaction space. This does not mean that the entire transaction must
be instantiated, only the attribute values of the particular class of transactions. A transaction must
be specifically asserted into the transaction space, either initially or as an AE during the execution
of another transaction.

Complex transaction definitions use a parallel bar operator (]|) to combine simple definitions
of rules, also called subtransactions, into a single transaction. A complex transaction in Swarm is
represented as follows,

TG =
LHS, — RHS,

LHS, — RHS,

Complex transactions regard all their subtransactions simultaneously as explained in the next
section.

2.2 Imnference Engine

In OPS5 [9] and similar rule-based systems, the inference engine performs a match-select-act
cycle until a halt statement (a type of AE) is reached or the match phase returns the empty set.
One can think of the match phase as comparing the LHS of all rules to WM. A match for every
CE in a rule constitutes an instantiation of that rule. A rule may have one or more instantiations.
All instantiations from all rules are gathered at the end of the match phase to form a set. This set
of instantiations, called the conflict set, is passed through the select phase. During this phase, a
conflict resolution strategy determines a single instantiation, or some subset of the conflict set, which
is passed to the act phase. The act phase performs the actions of the RHS of those instantiations
passed. The results of this phase may be modifications to WM, and/or calling subroutines and/or
modifications to PM*%. Once all actions are performed the cycle begins again with the match phase.

In this paper we will concentrate on the class of pure rule-based programs. In such programs
no conflict resolution strategy is used. Instead, instantiations are chosen nondeterministically for
execution from the conflict set. Many rule-based programs that depend on some form of conflict
resolution can be reformulated as pure rule-based programs. The conversion of such programs is
not addressed in this paper.

*We will only concentrate on modifications to WM in this paper.



T@) =
XY out(X) A in(Y) — in(Y), out(Y)

I
Z :in(2) — T(i);

Description: (a) T(i) is the transaction name, for some variable i. (b) X, Y, Z are dummy variables. {c) out(X)
is the first condition element in the LHS of the first subtransaction in T(i), where “out” is the class name and X
represents an attribute value of that class. (d) The arrow (—) separates the LHS and RHS. (e} In the RHS, the
dagger (1) after the action element in(Y) means “delete this tuple from the tuple space.” No dagger means “add
this tuple to the tuple space.” (f} The parallel bars (||} separate the subtransactions. (g) in(Z) is the first condition
element in the second subtransaction, which reasserts the transaction as an action element as long as in(Z) is in the
tuple space.

For notational convenience, the above transaction can be rewritten as:

T({) =
XY : out(X), in(Y)§ — out{Y)

Z:in(Z) — T();

Figure 1: Example of Swarm Transaction.

The execution cycle of a Swarm program begins by choosing a transaction nondeterministically
from the transaction space. The choice is fair in the sense that every transaction in the transaction
space will eventually be chosen. As a by-product of this choice, the transaction is deleted from
the transaction space (although it may explicitly reassert itself or another transaction may reassert
it). Once chosen, the LHS of all subtransactions are matched simultaneously. Those subtransac-
tions whose LHSs are satisfied execute their RHSs simultaneously, performing all deletions before
additions. A transaction is satisfied if one of its subtransactions is satisfied. Only tuples may be
deleted from the tuple space, but both tuples and transaction may be asserted into the dataspace.
Termination occurs when no transactions are left in the transaction space. Figure 1 presents the
tuple and transaction notation of Swarm.

2.3 Direct Translation of Programs

Pure rule-based programs can be translated to Swarm without modification to the rules. Each
rule in a pure rule-based program is represented as a subtransaction of a distinct transaction. In
addition, the termination conditions of the pure rule-based program are defined, negated, and placed
as a second subtransaction in each transaction. This ensures that the transaction is reasserted into
the transaction space as long as the termination conditions are not satisfied. When the termination
conditions are satisfied, each chosen transaction will not be reasserted into the transaction space.
Since the non-deterministic choice of transactions is fair, the termination conditions of the rule-
based program cause the Swarm program to terminate (though it still must be formally proven).
Thus, each transaction in Swarm contains two subtransactions: (1) the direct translation of a
single rule in the rule-based program and (2) the negated termination conditions of the rule-based
program for reassertion of the tramsaction. If all possible transactions are initially placed in the
transaction space, since a transaction is chosen nondeterministically and has an effect only if the
LHS of a state-changing subtransaction is satisfied, the execution sequences produced are those of



a pure rule-based program.

3 Sample Program

We use the Bagger problem [33] to illustrate how the Swarm proof logic may be employed for
verifying rule-based programs. Bagger is a toy expert system to bag groceries according to certain
characteristics, much like one would desire grocery items to be bagged in the store. The program is
easily expanded to utilize items with many characteristics. We use the original example in which:
(i) an item is one of three sizes (small, medium, or large), (ii) a large item may be contained in
a bottle, and (iii) a small or medium item may be frozen. Winston gives the original rules, which
rely on conflict resolution for the correct order in which the rules are executed. We have changed
those rules only to make conflict resolution explicit in the rule’s LHS and we have eliminated some
extraneous information for notational convenience. The Bagger problem was chosen because: (1) it
can be fully specified formally, (2) it can be stated as a pure rule-based program, and (3) it exhibits
some basic properties of rule-based programming, such as tasking and context switching.

Specifically, Bagger is given a set of unbagged grocery items represented by tuples (WMEs)
of the type unbagged(I), where I, ranging from 1 to mazitems, denotes a unique item number.
The value of magitems is determined by the number of unbagged items given initially. For each
unbagged tuple in the tuple space, the program is given a description of that item in the form of
a tuple of type grocery(I,C,W F). The first field of this tuple type corresponds to the unique
item number. The next fleld corresponds to a boolean value representing whether or not the item
is contained in a bottle. The third field gives one of three possible weights that determines if the
item is small, medium or large. These weights are: lgwgt, medwgt, smwgt respectively. The last
field corresponds to a boolean value representing whether or not the item is frozen. Execution of
the program must place those items that are unbagged in a bag, in a predefined order, with large
bottles first, then large items, followed by medium items, then small items. In the cases of medium
and small items, those that are frozen are packed before those that are not.

Bags should only be created when needed. To represent a bag, a tuple of type bag(IN,W,A) is
placed in the tuple space. The first field is the bag’s unique identification number. The next field
is the total weight of the bag. The last field is a sequence containing the identification numbers of
the items placed in the bag. A bag can only reach a certain weight, called mazwgt. Since bags are
created dynamically, a tuple of type current(N) keeps track of the number of bags created.

Another tuple of type step(B), is used as a confext element. A context element is normally
present in the LHS of every rule in order to segregate the rules into tasks, or contexts. It is used
often in rule-based programs along with a control rule that switches contexts or tasks, so that
another group of rules can execute. If a context element is used, there is normally only one tuple
in that class. Rules without a context element do not correspond to any task. In Bagger, the tuple
step(B) is present in every rule and divides the rules into tasks 1, 2, 3, and 4, depending on the
value of B. A control rule is used to switch contexts, according to the predefined task ordering.
The tasks are: (1) bag large bottles, (2) bag large items, (3) bag medium items, and (4) bag small
items. Bagger terminates when all unbagged items are bagged.
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Program Bagger (maxwgt,lgwgt, medwgt,smwgt maxitems,steps:

natural(maxwgt); natural{lgwgt); natural{medwgt); natural(smwgt);
maxwgt > lgwgt > medwgt > smwgt;

natural(maxitems); maxitems > 0;

steps = 4)

definitions

[ I:natural(l) =
item(I) = 1 < I € maxitems;
small-item(T) = item(I) A (3 C,W,F : grocery(I,C,W,F) : W = smwgt];
medium-item(I) = item(E) A [3 C,W F : grocery(L,C,W ,F) : W = medwgt];
large-item() = item(I) A [3 W,F : grocery(Ifalse, W,F) :: W = Igwgt];
large-bottle(I) = item(I) A [3 W,F : grocery(Ltrue,W,F) 1 W = lgwgt];
frozen(T) = item(T) A {3 C,W 1: grocery(I,C,W true)]

I

tuple types

[ L,C,F,W,AN,B :
A € [o I:item(l} = IJ* item(I), boolean(C}, boolean(F),
1 < W < maxwegt, natural(N}, 1 < B < steps ::
grocery(I,C,W F);
bag{I,W,A);
unbagged(T);
current(N);
step(B)

Figure 2: Bagger Program Definitions and Tuple Type Declarations

3.1 Swarm Representation of Bagger

Each of the rules in Bagger is directly translated to a single subtransaction of a distinct transaction
whose class name corresponds to the rule name. As described in Section 2, a second subtransaction
is added to every transaction. The LHS of this second subtransaction tests whether any items are
still unbagged. If so, then the transaction is reasserted. This test corresponds to negating the
termination conditions of Bagger: that all items are bagged. Figure 2 presents the program header,
predicate definitions, and tuple type declarations for the Swarm version of the Bagger program?®.
Figure 3 gives the transaction definitions®. Figure 4 gives the initialization section of the program.

®We use a three part notation, e.g., [v I,C,W,F : grocery(LC,W,F} s 0 < W < mazwgt], defined as follows: the
first part, up to the single colon, consists of 2 quantifier and a Hst of guantified variables; the middle part restricts the
domain of values that may be assumed by the variables; the third part, after the double colon, consists of a predicate.
Ii the single colon is missing, the domain is not restricted. Operators, such as s for concatenation, can be used in the
place of quantifiers. In such cases, the third part of the notation defines a st of operands over which the operator is
applied.

®The symbol <> represents the empty sequence.



11

Rules to bag large bottles

Rule(1}

LN,

i

Rule(2)
LN

I:

Rule(3)

WA :

step{l),

large-bottle(I}, unbagged(I)t,
bag(N,W,A)t, W £ maxwgt - lgwgt

bag{N, W-tlgwgt, A o I)

unbagged(I) — Rule(1);

step(l),

large-bottle(T}, unbagged(I),

[V M, W,A : bag(M,W,A) :: W > maxwgt - lgwgt],
current{N)t

e

bag(N+1, 0, <>), current(N+1)

unbagged(T) — Rule(2);

step{1)f,
{¥ I:large-bottle(l) = ~-unbagged(I))

step(2)

unbagged(I) —«— Rule(3);

Rules to bag large items

Rute(4)

LN,

I;

Rule{5)
LN

I:

Rule(s)

W, A :

step(2),

large-item(1), unbagged(I}f,
bag(N,W,A}, W < maxwgt - Igwgt

bag{N, Wilgwgt, A + I)

unbagged(I) —~- Rule{4);

il

step(2),

large-item(l), unbagged(I),

[V M, W, A : bag(M,W,A) it W > maxwgt - Igwgt],
current{N){

bag{N+1, 0, <>),current(N+1)
unbagged(I) —— Rule(b);

step(2)t
{¥ 1: large.item(I) :: ~unbagged(I)],
step(3)

unbagged(I} —— Rule(6);

Rules to bag medium items

Rule(7) =
IN,W,A :

I:

step(3),
medium-item{I), frozen(I), unbagged{E)t,
bag(N,W, A}, W < maxwgt - medwgt

——

bag(N, Wimedwgt, A o I}

unbagged(I}) —— Rule(7});

Rule(8) =
LN, WA :

I:

step(3),
medium-item(E), unbagged(I}t,

[V J : medivm-item{J} A frozen(J) :: —~unbagged{J}],

bag(N,W,A), W < maxwgt - medwgt
bag(N, W+4medwgt, A ¢ 1)

unbagged(l) —— Hule(8);

Rule(9) =
EN :

I:

step(3),
medium-item{I), unbagged(I),

[V M,W,A : bag{M,W,A} :: W > maxwgt . medwgt],
5

current(N}
bag{N41, 0, <), current{N+1}
unbagged{l) —— Rule(9);

Rule(10) =

step(3)t,
[¥I: medinm.item(I) :: —unbagged(l)]

——

step(4)

unbagged(I) — Rule(10});

Rules to bag small items

Rule(11) =
LN,W,A

step(4),
small.item(I), frozen(I), unbagged(I)t,
bag(N,W,A)t, W < maxwgt - smwgt

bag(N, W4smwgt, A o 1)

1: unbagged(I) — Rule(11);
Rule(12) =
LN, WA :
step(4),
small-item(I}, unbagged(I)t,
[V § : small-item(J) A frozen(J) :: —unbagged(J)]
bag{N,W,A}, W < maxwgt - smwgt
bag(N, Wesmwgt, A ¢ 1)
I
I: unbagged(I) —— Rule{12);
Rule{13) =

step(4),

small-itern(T), unbagged(I},

[V M,W,A : bag(N,W,A) it W > maxwgt - smwgt],

current(N)t
bag(N41, 0, <>), current{N41)
unbagged(I) ~— Rule{13);

Figure 3: Bagger Transaction Type Declarations
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initialization
The following tuples represent o sample grecery lst with mazwyt = 15, lpwgt = §, medwgt = 4, smwgl = 2 and mazitlems = 3.

grocery(1 false,2 false);
grocery(2,false,2,true);
grocery(3,false,4,false);
grocery(4,false,4,true);
grocery(5,false,4,false);
grocery(6,flase,6 false});
grocery{T7 false,6 false);
grocery(8,true,6,false);

[I:1 <1< 8:: unbagged(D)];
current(0);
step(1);

[t:1 <t <13 :: Rule(t)]

Figure 4: Sample Initialization Section for Bagger

4 Formal Verification

The goals of this paper are to illustrate that many interesting properties of a rule-based program
can be proven and to give a sense of how to approach the proofs of these properties. Properties that
can be formalized as part of the original problem specification are generally the most interesting
and should be proven in all programs. Such properties are normally concerned with the output
results. Termination may be implied by the problem specification or explicitly stated. As the
actual program is formulated, other interesting and necessary properties may be added to the
program specification. These properties include characterizing the inputs to the system, called the
input constraints, constraints that the program must uphold because of its specific design, called
structural constraints, and constraints that the program must uphold in order for the program to
satisfy the original specifications, called behavioral constraints. For example, in Bagger the original
specification consists of three main properties: (a) the items are ordered in a bag according to their
weight and whether they are frozen or not, (b) bags are created as needed, (c) all bags cannot
exceed some maximum weight. There are many different rule formulations that can be used to
satisfy these properties. An input constraint in our formulation of Bagger is that the tuple step(1)
be present initially in working memory. An example of a structural constraint associated with our
program is that at all times there can be only one tuple of type step(B) for restricted values of
B. A behavioral constraint specific to our program states that once a grocery item is placed in a
bag, it must remain in the same bag in the original position in which it was placed. This property
is necessary for proving properties (a) and (c) above, because our program assumnes an item is
properly packed in a bag the first time. Another program may randomly bag the groceries and
then check the ordering of the items in the bag. If the order is not correct, the contents of the
bag are dumped out and repacked. Thus, the previously stated behavioral constraint would not
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apply. Consistency constraints may be part of any of the previous categories of properties, but are
considered as a separate verification concern. Since we use the same basic rules that Winston [33]
described for Bagger, we have a set of specifications that are biased to this encoding.

In this section, we describe the Swarm proof theory [7]. Definitions will be given for the formal
meaning of a safety and progress property. This proof logic is built around assertions that express
program-wide properties. Such properties encompass the entire knowledge base and database of a
rule-based program. The Swarm proof logic is based on the UNITY [3] proof logic, and uses the
same notational conventions. Informally, the meaning of the assertion {p}t{q} for a given Swarm
program, is whenever the precondition p is true and transaction instance ¢ is in the transaction
space, all dataspaces which can result from execution of t satisfy postcondition g.

Safety properties are used to express constraints on the program, whether they are output con-
straints, structural constraints, behavioral constraints, or consistency constraints. As in UNITY’s
proof logic, the basic safety properties of a program are defined in terms of unless relations.

Vi:t € TRS = {p A =g}t {p Vv q}]
p unless g

where TRS is the set of all transactions that can occur in the transaction space. Informally, if p
is true at some point in the computation and q is not, then, after the next step, either P remains
true or q becomes frue. From this definition, the properties stable and invariant can be defined
as follows,

stable p = p unless false invariant p = (INIT = p) A stable p

where INIT is a predicate which characterizes the valid initial states of the program. Informally, a
stable predicate once true, remains true, and invariants are always true. The symbol = represents
logical implication. We shorten the reference to an invariant property by using inv.

The generation of output and program termination are expressed as progress properties. The
ensures relation is the basis of the progress properties. This relation is defined as follows.

punless g A[3t:t € TRS = (pAg=[t) A{pA g}t {d]
p ensures g

where [t] means that t is in the transaction space. Informally, if p is true at some point, then (1)
p will remain true as long as g is false, and (2) if ¢ is false, there is at least one transaction in the
transaction space which can establish ¢ as true.

For the leads-to (+—) property, the assertion p — ¢ is true if and only if it can be derived
by a finite number of applications of the following inference rules.

(1) D _ensures ¢

Py

(Z)pp—»r/\rl——-—rq
Prq

(3) For any set W,
Vm:meW : pm) — q]
@m:meW::pm)] — g
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Informally, p —— ¢ means once p becomes true, ¢ will eventually become true, but P is not guaran-
teed to remain frue until ¢ becomes true.

The next several sections are devoted to applying the Swarm proof logic to verify that the
safety and progress properties expressed for our formulation of Bagger hold. For each category of
constraints, we present the properties corresponding to that category and give an example proof.
Also, we prove the three main properties involved in characterizing the output of Bagger, and show
the program terminates. Proofs for properties not shown can be found in {13].

5 Input Constraints

In rule-based programs, the inputs to the program are known and can be characterized in the form
of initial constraints. The constraints are assumed to be met by all inputs. In a real application,
there may be a possibility of inputs contradicting each other such as in sensor readings. In this case,
some preprocessing must be available to determine which input is given to the system. This step
is niecessary since any conclusion can be implied by inputs that do not meet the initial conditions.
These conditions must be as complete as necessary to ensure those safety and progress properties in
the specification of the program that rely on a defined initial program state. We let INIT represent
the initial conditions or input constraints of a program. In Bagger, INIT is defined as follows (with
informal descriptions in italics):

INIT= [ZLCW,F: grocery(I,C,W,F) :: 1] = mazitems
The total number of grocery items equals maxitems.
AV 1:item(l) :: [ CW,F =2 grocery(I,C,W,F)] ]
There exisis a grocery tuple for each ilem.
A ¥ LLCW,F : grocery(I,C,W.F) : W < maxwgt)
Each grocery item cen weigh ai most maxwgt.
AN Iz [FCWF : grocery(I1,C,W,F)] & unbagged(l)]
For every grocery tuple (i.c., grocery(I,B,W,F)), there is a
corresponding unbagged tuple (i.e., unbagged(I)).
AV N it current(N) & N = 0}
The tuple current(0) is the only one of its type present.
AV B u step(B) & B = 1]
The tuple step(1) is the only one of ils type present.
AVt 1<t <13 < Rule(t)
All transactions are present in the transaction space.

When proving a safety or progress property, the effects of all transactions on the current pro-
gram state must be considered. The proof process is less tedious and easier to explain if we instead
look only to those transactions that can possibly violate the property. In Bagger, we can par-
tition the transaction space into three sets of transactions, characterized by their state-changing
subtransactions on the program state: (i) those that pack items in bags, (ii) those that create new
bags, and (iii} those that act as control rules and switch contexts. We call these sets of transactions
packers, creators, and switchers respectively. The transactions are partitioned as follows.

packers = [U t : t € {1,4,7,8,11,12} == {Rule(t)}]  transactions that add items to bags.
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creators = [U t : t € {2,5,9,13} :: {Rule(t)}] transactions that create new bags.
switchers = [U t : t € {3,6,10} :: {Rule(t)}] transactions that change contexts.

Throughout the proofs, we will refer to a transaction as being successful. For this program, in
particular, we mean that the state-changing subtransaction in each transaction is satisfied. Recall
that each transaction in Bagger contains two subtransactions. If the second subtransaction is
satisfied, the transaction is reasserted into the transaction space. If this is the only subtransaction
satisfied, no state-change occurs, but the transaction is still considered satisfied, because one of its
subtransactions is satisfied. Thus, we use the term successful to distinguish between satisfying the
state-changing subtransaction, and the non-state-changing subtransaction. This term is used only
if the previously described approach to converting a pure rule-based program to Swarm is used
(Section 2).

The tuple of type grocery(1,C,W,F) for some I,C,W, and F is the data structure that holds all
of the information pertaining to a grocery item. There are certain restrictions that must be placed
on the manipuation of tuples of this type. We present these restrictions here, not because they
are considered input constraints, but because they define the characteristics of specific input data
throughout the execution of the program. The following safety properties express these restrictions.

Property 1. inv [¥ I,C,W,F : grocery(I,C,W,F) :: 1} = maxitems
The total number of grocery items equals mazitems
Property 2. inv [V I:item(I) :: [© C,W,F : grocery(I,C,W,F)} : 1] = 1]
For every item, there is exactly one grocery tlem

Property 1 is part of INIT. Since no transactions add or delete grocery(I,C,W,F) for all values
of ,C,W, and F, the invariant holds.

For Property 2, initially the invariant holds because it is implied by INIT. The first conjunct of
INTT states that there are a total of mazitems grocery tuples. The second conjunct of INIT states
that for each item I, where 1 < I < magzitems, there is at least one grocery tuple. Since there can
only be mazitems of such tuples, there must be exactly one for each I, such that item(I). Since no
transactions add or delete grocery(I,C,W,F) for all values of I,C,W, and F, the invariant is not
violated.

6 Consistency Constraints

A property that constrains the classes of working memory elements or the individual working
memory elements that can exist simultaneously in working memory at any time during program
execution is a consistency constraint. These constraints may fall into any of the categories of
input, structural, behavioral or output constraints, depending on the working memory elements
that are constrained. Thus, there is overlap between these constraints and the other categories
of constraints. Because of the previous usage of consistency, we maintain this category only for
characterizing those classes of working memory elements that may be semantically contradictory.
By semantically contradictory, we mean that two distinct classes of working memory elements have
opposite meanings and the presence of certain elements of both classes simultaneously in working
memory yields an inconsistent state.
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In Swarm, a working memory element either exists or does not exist, so there can be no con-
sistency problems of having a literal and its negation exist simultaneously in working memory.
Therefore, in Swarm programs, consistency constraints are necessary to describe those classes of
working memory elements that are semantically contradictory. For example, in Bagger, whatever
the formulation of the program, it would not be suitable for a particular grocery item to be un-
bagged and bagged at the same time. In our particular program, we use the working memory class
unbagged(I) for some item I to represent an unbagged item, and the tuple bag(IN,W,A) for some
N,W.A, to represent a bag in which the item I is packed. Under certain conditions, working memory
elements within these two classes are semantically contradictory. Also, The absence of an element
in some class does not necessarily mean its negation. For example, if ~unbagged(¥) is true, then
the tuple does not exist in the tuple space. If I < 0 or I > mazitems, then the non-existence of this
tuple is not of concern. But if item(I) is true, ie., 1 € I < mazitems, then the non-existence of
this tuple should mean that the item has been packed in a bag. Thus, the consistency constraint
not only expresses that an item cannot be unbagged and bagged simultaneously, but also gives
meaning to the negation of a working memory element in a particular class. Below, the consistency
constraint is formally stated as a safety property and is followed by its proof.

Property 3. inv [V I : item(I) :: —bagged(I) < unbagged(I)]
At any time, a grocery ilem is either inside or outside of a bag
where bagged(I) is defined by
bagged(I) = [3 N)n :: placed-in(I,N,n)]
and
placed-in{(I,Nn) = [3 WA : bag(N,W,A) : An =1]

Initially unbagged(I) is true for all I such that item(I) and there are no tuples of type
bag(N,W,A) for all N,W and A. Thus, the invariant holds initially.

The proof of equivalence is somewhat obvious. No transactions add a tuple of type unbagged(I)
to the tuple space. The tuple unbagged(I) may be deleted by a transaction in the set packers
(henceforwared called a packer transaction) if and only if it is placed in a bag yielding

[3N,W,An : bag(N,W,A) An < [A] :: An = 1]

which by definition is bagged(I). The notation |A| means “the size of sequence A.” This yields the
equivalence of

—~unbagged(I) = bagged(I)

which guarantees the invariant.

7 Structural and Behavioral Constraints

Structural and behavioral constraints are properties that restrict the data structures in working
memory and dictate the strategy the program follows in order to satisfy its goals. Therefore,
these constraints are program specific. In this section, we define both structural and behavioral
constraints, normally expressed as safety properties, and give those constraints associated with the
formulation of Bagger that are used. An example proof is given for one of each type of constraint.
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7.1 Structural Constraints

A structural constraint is defined as a property that constrains the organization of the data struc-
tures in working memory in order for the program to execute correctly. There are four safety
properties that express structural constraints in Bagger.

Property 4. inv [Z B : step(B) = 1] =1
There is exactly one coniext element always present
Property 5. inv [X N : current(N) : 1] = 1
There is egactly one current tuple always present
Property 6. inv [V N :: [£ WA : bag(N,W,A) : 1] < 1]
The bags are identified by unique naturel numbers
Property 7. inv [V N,W,A : bag(N,W,A) = [Y M : 1 < M <Nz [3 W?,A” 3 bag(M,W’,A%)] ]]
The bags are ordered sequentially, beginning with the number 1

Looking at Property 6, one may be tempted to include this property in the category of con-
sistency constraints since working memory is barred at all times from having two distinct tuples
bag(N,W,A) and bag(IN,W?,A’). But there is no comparison between distinct classes of work-
ing memory elements that may cause a semantic inconsistency. Thus, Property 6 remains in the
category of structural constraints.

As an example, we give the proof of Property 4 above. The proof of this property is straightfor-
ward. As stated in the Section 5, the tuple step(1) is part of the initial conditions, and defined in
INTT. No transactions assert multiple tuples of type step(B). A transaction from the set switch-
ers (henceforward called switcher transactions) may delete step(B) if and only if step(B+1) is
reasserted. Thus, the invariant of Property 4 is maintained.

7.2 Behavioral Constraints

Behavioral constraints are those properties which dictate the strategy or reasoning process followed
by the program to accomplish its goals. These constraints depend on the particular formulation of
the specifications and are program specific. These constraints differ from structural constraints in
that they are not targeted precisely to the format or structure of working memory. Instead, they
are related to the actions the program performs in order to accomplish its goals.

In the formulation of Bagger presented in Section 3, there are two behavioral constraints ex-
pressed as safety properties.

Property 8. [V I,N,n :: stable placed-in(I,N,n)]
A bagged ilem remains bagged in the same bag and in the same position
Property 9. inv [V N,N W, W’ A,A’ nn’m : bag(N,W,A) A bag(N’, W' A) AN # N’ A
l<n<m<jA[AL1L D <[A
T An#AmAAn # An’]
A bagged item exists once in only one bag

These two properties deal precisely with characterizing an item in a bag, and are necessary for the
proofs of the output constraints, output generation, and termination. They also directly relate to
the way the program is formulated to accomplish its goals. For example, as stated earlier, it is
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possible to have a program that randomly places items in a bag and checks their ordering. If the
ordering is incorrect, the items are dumped out and repacked, until correct. Then, Property 8, for
example, would not be applicable to the program.

As an example, we give the proof of Property 9 above. For the proof, we assume that Property
8 holds, where the predicates bagged(I) and placed-in(I,N,n) are defined in Section 6. (The proof
can be found in the appendix). Initially, Property 9 holds because there are no tuples of type
bag(N,W,A) in the tuple space, for any N,W and A. By the definition of invariant in Section
2, we can assume that Property 9 holds prior to the next execution step, in which a trausaction is
non-deterministically chosen from the transaction space and executed. Only a packer transaction
can affect the invariant by: (i) packing an item in multiple bags simultaneously or (i} by packing
an item already packed in a bag.

For case (i), an item cannot be added to two bags simultaneously, because no transaction asserts
multiple bag(N,W,A) tuples for different values of N into the tuple space.

For case (ii), we are given

[INW,AnD: bag(N,WAYAn < Al : An = 1]
= by definition
bagged(I)

= by Property 3
—unbagged(I)

Assuming that Property 8 above has been proven to hold, we know
stable bagged(I) = stable ~unbagged(I)

Thus, case(ii) also cannot occur, proving the invariant in Property 9.

8 Output Constraints

Formally characterizing the output of a system requires the use of both safety and progress prop-
erties. Safety properties constrain the output to a certain format and range. These properties,
called output constraints, are discussed in this section. Progress properties are used to ensure that
output is generated. These properties will be discussed in the next section. Normally there is a
routine that gives the output result and it is this result that is examined to determine if it meets
the specified constraints. In Swarm however, there is no output mechanism, so we must look at
how the desired result is characterized in working memory before an output routine is called upon.
For example, there are three ocutput constraints associated with Bagger.
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Property 10. inv [V NW,An,m: bag(NNWA) A1 <n<m< [A] = f(An) < f(A.m)]

The items in each bag are ordered by the function f as follows: (a) large bottles,

(b) large items, (c) medium items (frozen items first), (d) small items (frozen item first)
Property 11. inv [V N,W,A : bag(N,W,A) :: W < mazwgi]

At any time, the weight of every bag cannol exceed the mazimum weight allowed
Property 12. inv [V N,N’,W,W’,A,A” : bag(N,W,A) A bag(N,W’,A) AN’ < N

i W+ weight(A.1) > mazwgd]
At any time, the first item in bag N, cannot fit in any bag M, where M < N and
weight(I) = [ C,W,F : grocery(I,C,W,F) :: W]

If the appropriate routine existed, the contents of a bag and its total weight may be output in any
number of ways, from a simple list to a detailed graphics. Instead of using these representations to
verify the output satisfies the constraints, we utilize the working memory elements directly.

The three properties above are considered the most interesting because they comprise the orig-
inal problem specification. Property 12 expresses a constraint on why bags are created; that there
exists some restriction on bag creation. The property is expressed this way because the program
state must be used in the safety property. The output constraint proven in this section is Property
10, a safety property that characterizes how the items are ordered in bags. The function f can be
informally defined as a mapping of the different size items to the order in which they should be
placed in the bag.

Definition 1 Let stems = [U I : item(I) :: {I}] and priorities = [U J : 1 < J < 6 :: {J}]. Then {:
items — priorities, such that:

f(I) = 1 if large-bottle(T)

f(I) = 2 if large-item(I)

f(I) = 3 if medium-item({I) A frozen(I)
f(I) = 4 if medivm-item(I) A ~frozen(I)
f(I) = 5 if small-item(I) A frozen(I)
f(I) = 6 if small-itern(I) A —frozen(l)

The definitions of the above predicates are found in Figure 2. The function g maps the values
in the range of I into the values used by B in the tuple step(B) as defined by steps in Figure 2..

Definition 2 Let g: priorities — steps, such that:

gd) =1 ifJ=1
gd) =2 ifJ=2
g(J) =3 fI=3yT=4
g() =4 fI=5yJ=56

The composition of f and g can be viewed informally as a mapping of items to the steps in
which they are placed in a bag.

The invariant of property 10 holds initially since there are no tuples of class bag(N,W,A) for
N,W and A. Only a packer transaction can violate the invariant. We assume the invariant holds
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prior to execution of a packer transaction, i.e., the ordering of the items currently in all bags is
correct. We must show that every packer transaction preserves the ordering.

Because we assume the items are correctly ordered prior to the next execution step, it is only
necessary to show that the next item packed in any bag does not violate that ordering. Throughout
the proof, we rely on Property 3 (from Section 5), and Properties 8 and 9 (from Section 7.2). Then
the ordering can be violated only if the next item packed is not ordered correctly with respect to
the Jast item in each bag. Thus, the invariant of Property 10 is reduced to the following proof
obligation for all unbagged(I).

inv [ NW,An : bag(N,w,A) An = |A| :: f(A.n) < £(D)] (1)
The following two definitions are given to facilitate the proof of (1).
Definition 3 min-f = [min I;s : unbagged(I) A {(T) = s =1 §]
Definition 4 min-f-item = [min I : unbagged(I) A {(I) = min-f :: ]|

The items are ordered from 1 to mazitems. Thus, we can use the appropriate item number that is
minimum without loss of generality, i.e., min-f-item, when referring to any item with an f value of
min-{. If there are no tuples of type unbagged(I) left in the tuple space, the values of min-f and
min-f-item are undefined. Given a packer transaction is successful by matching some I such that
unbagged(I), we know that either: (i) f(I) = min-f or (ii) {(I) > min-f. In case (i), the invariant is
maintained because of the earlier assumption that the ordering of the items in the bags is correct
prior to the execution of a packer transaction. If min-f-item is packed, all unbagged items have
an equal or greater f-value, so the correct ordering is maintained. But in case (ii), the invariant
may be violated, since an item with a lesser f-value may be packed at a later time, causing an
incorrect order. Hence, to show (1) and therefore Property 10, we must show that the only packer
transaction that can bag an item must have a precondition that matches unbagged(I) with f(I)
= min-f. Without loss of generality, we refer to the item that is matched as min-f-item.

For every value, 1 < min-f < 6, there is exactly one packer transaction that can bag min-f-item.
For example, if min-f = 4, then we know that medium-item(min-f-item) and ~frozen(min-f-item)
are true. Only Rule(8) can pack min-f-item into an available bag (see Figure 3). We will refer to the
transaction that can bag min-f-item as min-f-bagger, and show that if an item can be packed, then
only min-f-bagger can be successful. To show case (ii) cannot occur, we must show that min-f-item
is the only item that can be packed. To do this, we show that the only packer transaction that can
be successful is min-f-bagger.

The first step in the proof is to show the implications the tuple step(B) has on which packer
transactions are successful.

Lemma 1 inv step(B) = B < g(min-f)

Initially, step(1) is in the tuple space and there are no I, such that unbagged(I)
and g(f(I)) < 1. Assuming the invariant holds prior to the next execution step, there are
two cases to consider that may violate it: (a) g{min-f) is altered by a packer transaction
and (b} B in step(B) is altered by a switcher transaction.

Case (a): B < g(min-f). The value g(min-f) may be altered if
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[% I : unbagged(I) A g(fI)) = min-f:: 1] =1

and min-f-item is packed in the next step by a packer transaction. If this occurs, min-f
will increase by at least 1. Since the value of B in step(B) cannot be altered by any
packer transaction, the invariant is not violated in this case.

Case (b): B < g(min-f). If B, such that B < g(min-f), is altered by a switcher
transaction it may be incremented by 1 to at most equal g(min-f). Since, the value
of g(min-f) cannot be altered by a switcher transaction, the invariant holds. If B =
g(min-f), no switcher transaction is successful because the precondition of every switcher
transaction can be restated as (step(B) A [V 1: g(f(I)) = B = —unbagged(I)). Therefore,
the invariant is not violated. End Lemma 1.

We know that only those packer transactions that match the current step(B) can pack an item.
By Lemma 1, we know that B < g(min-f). If B < g(min-f), no packer transaction is successful,
including min-f-bagger. (Actually, only switcher transactions can be successful, but that is not a
concern.) If B = g(min-f), then at most two transactions can be successful. In the case of 1 < B <
2, only one transaction can be successful, and this transaction is min-f-bagger. In the case of 3 < B
< 4 (in which frozen items are bagged before nonfrozen items), it is possible for two transactions to
have successful queries because of the value of B. One of these transactions matches unbagged(I)
such that f{I) = k for 3 < k < 6, and the other matches unbagged(J) such that f(J) = k + 1.
The precondition of the second transaction can be restated as

step(B) A unbagged(J) Af(J) =k + 1 A [VI: I) = k == ~unbagged(I)]

The first transaction has no such restriction in its precondition. Thus, if unbagged(I) and un-
bagged(J) exist with f(I) = k and f(J) = k + 1, then only the first transaction can be successful,
and this transaction is clearly min-f-bagger. If there are no unbagged(J) with f(J) = k + 1, then
again only the first transaction can be successful, and again this is min-f-bagger. Since the second
transaction can be successful only in the absence of unbagged(I) with f(I) = k, it is clearly min-
f-bagger. Hence, we have shown that if a packer transaction is successful, in all cases it can only
be min-f-bagger, which only packs min-f-item. Thus, case (ii) cannot occur, proving the invariant
of Property 10.

9 Output Generation

In the previous section we showed how output can be characterized using constraints. These
constraints, expressed as safety properties, restrict the representation of output in working memory
by constraining the format and allowable range of values for certain working memory elements. The
proofs guarantee that if output is generated, it satisfies the given constraints. In this section, we
concentrate on the generation of output. As stated earlier, progress properties guarantee that the
program will do something useful. In this case, progress properties are used to guarantee that
output is generated.
There are three progress properties relating to output generation of items.
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Property 13. [V 1:item(I) :: unbagged(I)] =— [V I : item(I) :: bagged(I)]
All unbagged ttems are eventually bagged
Property 14. [V N :: current(N) A {3 T : unbagged(I)
n [V M,WLA : bag(M,W,A) A M < N = weight(I) + W > mazwgi]
F—
current(N+1) A bag(N+1,0,<>)]
Buags are created when needed.
Property 15. [V N i bag(N,0,<>) =— [3 W,A : bag(N,W,A) = W > 0 A A # <>]]
Lventually every bag has at least one item

These properties are implied by the program specifications. First, there is some result given by
the program, such as bagged items. The implicit goal of Bagger is to bag all the items it is given.
We assume these items meet the input constraints of Section 5. Properties 14 and 15 extend the
specification that a bag should be created only if there is at least one item to be packed in the bag.
To give an example of proving a progress property associated with output generation, we give the
proof of Property 13. Because Bagger uses tasking and context switching, a common paradigm in
rule-based programming, the program is divided into tasks which follow a predefined order. The
approach used to prove the correctness of this property is outlined below. This approach is useful
for those rule-based programs that utilize this paradigm. It is not restricted to only those programs
whose tasks are have a specific sequential ordering as in Bagger.

1. Specify the initial conditions and termination conditions of each
individual task.

2. Prove each task eventually satisfies its termination conditions
when started at its initial conditions.

3. Prove the execution ordering of the tasks is correct.

1. Specify the initial conditions and termination conditions of each individual task.
As stated earlier, Bagger uses the tuple step(B) as a context element to segregate the rules for
each of the 4 tasks corresponding to the value of B. Property 4 in Section 7.1, states that there
is exactly one tuple step(B) at all times in the tuple space, meaning only one task can be active
at a time. Let inif(B) represent the initial conditions of task B, and let term(B) represent its
termination conditions. In [12], we showed how an individual task in Bagger is proven. Such a
proof can be done specifically for each task, but it is easier if the proof is generalized. Fortunately,
Bagger has the characteristic that init(B) and term(B) can be generalized over all B, 1 < B < 4.
Thus, only one proof is needed for all four tasks, though it is slightly more abstract.

init(B) = step(B)
A [V 1:g(f(I)) = B :: unbagged(I)] (2)
term(B) = step(B)

AV I:g(f(I) =B : bagged(I)] (3)
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where g(f(I)) is the composition of functions defined in Section 8.
2. Prove each task eventually satisfies the termination conditions when started at
its initial conditions. This is stated as the following leads-to relation.

init(B) — term(B) for 1 <B < 4 (4)

Using (2) and (3), this expands to

step(B) A [V I:g(f(I)) = B :: unbagged(I)]
— (5)
step(B) A [V I: g({(I})) = B :: bagged(I)]

for 1 < B < 4. For each task, we are only concerned with the items that can be bagged in that
task. To show (4), we use induction on the number of items that can be bagged in task B, i.e.,
given the current value of B in the tuple step(B). From Section 6, 1 < B < 4

[V I:g(f(I)) =B :: bagged(l)] &
[Z1:g(f(I)) = B A unbagged(I):: 1] = 0 (Property 3)

Since it is clear that
(step(B) A [Z1: g(f(I)) = B A unbagged(I) :: 1] = 0) = term(B) (6)

we need to show that init(B) —— (6). If there initially are no I, such that g(f(I)) = B for step(B),
then the proof of (4) for that value of B is trivial. Assume that for each task there are items to be
bagged, i.e.,

[VB:1<B<4:[E1:gf(I) =B A unbagged(I) :: 1] > 0] (7)
Wedefinefor 1< B<4

must-bag(B,a) = step(B)
AZT:g(f(I)) =B A unbagged(I) : 1] = (8)
Aa>0

Then, given our assumption in (7),

init(B) = (must-bag(B,a) A a > 0) (9)
and

(must-bag(B,a) A @ = 0 ) = term(B) (10)
for 1 < B < 4. Both (9) and (10) can be stated as leads-to relations. The proof obligation becomes

(must-bag(B,a) A @ > 0) — must-bag(B,0) (11)

for 1 < B < 4. We use induction on the number of unbagged items to show (11). The implication
in (10) can be considered the base as case of the induction proof. The remainder of the proof is
to show that the number of items that can be packed during each task decreases by one, i.e., the
induction step. This is stated as:



24

(must-bag(B,a) A @ > 0) — must-bag(B,a - 1) for1<B<4 (12)

Using (12), we can apply the transitivity of leads-to to (9), (10}, and (11) to conclude (4).

To prove (12), two cases must be addressed: (1) if the unbagged item considered (i.e., the item
I with g(f(I)) = B for the current step(B)), does not fit in any available bag, or (ii) if the item
considered does fit in an available bag. We define for all T and for 1 < B < 4

fits(I,B) = unbagged(I)

A g(f(I)) = B
A [3 N,W,A : bag(N,W,A) = W < weight(I) < mazwgi] {13)

The two cases can then be stated as:

Cy: must-bag(B,a) A @ > 0 A ~fits(,B)
C': must-bag(B,ae) A @ > 0 A fits(I,B)

We know that logically, for 1 < B < 4
(must-bag(B,a) A a > 0)+— C; v Cy (14)

If we can show that C7 and C3 both independently lead to must-bag(B,e- 1), for 1 < B < 4, then
we can prove (12). (This can also be stated using the disjunction property of leads-to in Section
2.) Thus, we must show both:

Ci— Cy (15&)
C2 — must-bag(B,x - 1) (16a)

which can be restated as

must-bag(B,a) A & = k A —fits(I,B)
s (15b)
must-bag(B,a) A @ = k A fits(I,B)

and
must-bag(B,a) A @ > 0 A fits(1,B)
T—- (16Dh)
must-bag(B,a - 1)

for some value k and 1 < B < 4. We use ensures to prove (15). Relying again on Properties 8
and 9, all transactions either maintain the LHS of the ensures or establish the RHS, thus proving
the unless part of the ensures. For every B, such that 1 < B < 4, there is a transaction (such as
Rule(2) for B = 1) that establishes the RHS of the ensures in (15) if the LHS holds in the state
of computation prior to the next execution step.

The leads-to in (16) is a little more difficult to prove than the one in (15). We first look at the
case in which for the tuple step(B), 1 < B < 2, i.e., consider the tasks of bagging large bottles
and large items only. In this case, all the transactions either maintain the LIS of (16) or establish
the RHS, thus proving the unless part of an ensures. Also, there is exactly one transaction that
establishes must-bag(B,a - 1). The leads-to relation in (16) for the case of 1 < B < 2 holds.

For the case in which 3 < B < 4, (186) is more complicated to show because these tasks are each
concerned with bagging more than one type of item, i.e., frozen and non-frozen items. Another
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case analysis is needed and the conditions must be augmented to the LHS of (16). The cases are:
(i) if the number of frozen items (for must-bag(B,a) to hold) is greater than zero and frozen(I) is
true (for fits(I,B) to hold), and (ii) if the number of frozen items equals zero and —frozen(I) is true.
Remember, we are not concerned about the order in which the items are bagged. That is restricted
using the output constraints in Section 8. Here we are concerned only with getting all the items in
a bag. We will not go into further detail, but assume (16) can be concluded for 1 < B < 4.

As stated earlier, by proving (15) and (16), we prove (12) using the transitivity of leads-to.
Then using the transitivity of leads-to again on (9), (10), (11), and (12), we have proven (4).

3. Prove the execution ordering of the tasks is correct. In the case of Bagger, the tasks
must follow a predefined sequential order. The correctness criteria for this portion of the proof of
Property 13 is stated as follows.

[vVB:1< B <3 :: term(B) ensures init(B+1))] (17)

The ensures in (17) can be proven easily because for each task (except task 4) there is a control
rule, or transaction that changes contexts, i.e. for 1 < B < 3, there exists Rule(t) for 1 < t < 13
that causes init(B+1) to be true.

At this point in the proof of Property 13 we have shown:

init(B) — term(B) for1<B<4 (4)
and

term(B) —- init(B + 1) forl<B <3 (17)
It is clear that

[V I:item(T) :: unbagged(I)] = init(1) (18)
Then, by (1) and the transitivity leads-to, we can conclude

[V I:item(I) :: unbagged(I)] = term(1) (19)
and

term(1l) +—— term(2) ~— term(3) — term(4) (20)

We rely on Properties 3, 8 and 9 to state that for 1 < B < 4
term(4) = [E1:g(f(1)) = B :: unbagged(I)] = 0 for1<B<4 (21)
which can be restated as
term(4) = [V I:item(I) :: bagged(I)] (22)

Then Property 13 can be concluded from (18)-(22).

Though proving a program satisfies it specifications is normally complicated, there are other
reasons which contributed to the complexity of the proof of Bagger. One of the main problems is
the task variable has no semantic meaning within the actual task performed. This task variable
plays an integral part in the behavior of the program, and hence, the proof. To show the program
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progresses to termination, we must show it progresses through the tasks in the predefined order.
To do this, we also have to show that what is accomplished inside a task is correct, and the task
itself eventually is completed. Therefore, we had to define a relationship between the task name
and work performed under that name. The approach used was to prove that each task executed
to completion first, and then prove the order of the tasks was correct. It was very concise for the
Bagger program, because the task ordering was strictly sequential. There may be choices involved
in task ordering, which would complicate the proof further, but the same approach can still be
used. This approach also shows that individual tasks can be shown to satisfy their specifications
without showing the entire program satisfies its specifications.

Another reason for the complexity of the proof is the representation of the program we used. The
proof showed many places in which the Bagger program could be improved, making the proof more
concise and straightforward. For example, if the transaction that creates a new bag also bagged
the item tested in its precondition, there would be no need to introduce the predicate fits into the
progress property proof. Finally, the irregularity of the goals of each task causes unnecessary case
analysis, because the first two tasks bag one type of item and the last two tasks bag two types of
items. The proof presented in this section would be considerably less complex if these corrections
to the program were made. It is often the case in which showing a program meets its specifications
offers insight into a better representation of the specifications, and hence, and easier proof. This
leads us to believe that incremental proving and development of a rule-based program are essential
to creating a correct and efficient program.

10 Termination

There are many problems, such as in diagnostic trouble shooling, for which non-terminating rule-
based programs can be utilized. For these programs, it is more important to prove certain goals
are reached during program execution and that the cycle of tasks to be continuously repeated
by the program is executed in the correct sequence. These proof obligations are similar to those
in Section 9, where it was shown that the individual tasks terminate and are correctly ordered
during execution. For other programs, eventually reaching a state in which the program terminates
is implied by the specification of the program. In this section, we address these programs by
presenting the termination criteria of a Swarm program expressed as a progress property, and give
the proof of this criteria for Bagger.

As stated in Section 2, a Swarm program terminates when there are no transactions left in the
transaction space. A transaction can only be deleted from the transaction space if it is chosen for
execution. It can reassert itself or may be reasserted by another transaction. The termination for
a Swarm program is formally stated below.

Property 16.  INIT — TERM
where
TERM = [Vt :t € TRS : -[t] ]

For Bagger, TERM can be defined more specifically as
TERMpagger = [Vt : 1<t < 13 =[Rule(t)] ]

Our proof obligation is then
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INIT +— TERM Bogger (23)

In Section 9, we showed that all unbagged grocery items are eventually bagged by proving each
task completes its goal of bagging the appropriate items for that task. By the transitivity of the
leads-to relation and (4) and (17) in Section 9, we have

init(1) —s term(4) (24)

We know inif(1) is the first executing task because step(1) is initially in the tuple space. By
Property 4 in Section 7.1, we know there is always exactly one tuple of type step(B) where 1
< B < 4. We prove the following lemma stating that the value of B in the tuple step(B) is
non-decreasing and if it increases, it does so in sequential order, bounded above by 4.

Lemma 2 [V B : 1< B <4 :: step(B) unless step(B + 1)] A stable step(4)

To prove the unless relation holds, we need only to show that all transactions either
maintain the LHS of the relation or establish the RHS. All packer and creator trans-
actions maintain the LHS since they do not affect the tuple step(B). If a switcher
transaction changes the value of B, it does so by incrementing it by 1, thus establishing
the RHS. There are no transactions that modify the tuple step(4), proving the stable
property. End of Lemma 2.

Using this lemma, we know that term(4) must be the last executing task. The progress property
in (24) concludes that the first executing task leads to the last executing task. This property is
an integral part of the proof for termination. We can divide the remainder of the proof into the
following two statements.

INIT — indt(1} (25)
term(4) —s TERM pogger (26)

The proof of (25) is trivial from the definition of INIT in Section 5, i.e., we know
INIT = [V I: item(I) :: unbagged(I)] (27)
and it is clear
[V 1:item(I) :: unbagged(I)] A step(1) = init(1) (28)
From Section 9, we know
term(4) = [V I : item(I) :: bagged(D)] (22)
To prove (26), we can use (22) and reduce the proof obligation to
[V I:item(I) :: bagged(I)] = TERM pogger (29)

To show (29), we use induction on the number of transactions left in the transaction space. We
define

rales-left(8) = (¥ t: 1 <t < 13 A Rule(t) :: 1] = §) (30)
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We know

[V I:item(I) :: bagged(I)] A rules-left(0)
— (31)
TERMBagger

The proof obligation is then to show

[V I:item(I) :: bagged(I)] A rules-left(8) A 8 > 0
— (32)
rules-left(0)

The property in (31) can be considered as the base case of the induction. The remainder of the
proof of (32) is to show that the number of transactions in the transaction space decreases by 1,
i.e., the induction step.

[V I:item(I) :: bagged(I)] A rules-left(3)
- (33)
rules-left(4 - 1)

Since Property 8 is a stable property, we do not have to state [V I : item(I) = bagged(I)]
in the RHS of the leads-to relation in (33). The proof is straightforward as it relies on the
second subtransaction of each transaction from the translation described in Section 3. Because
of this subtransaction, all transactions will establish the RHS. In other words, no matter which
transaction is chosen for execution, it will not be reasserted into the transaction space all unbagged
items are bagged and remain bagged (relying on Property 3).

Since at least one transaction establishes the RHS of (33), the leads-to relation holds proving
(32). The proof of (32) establishes the proof of (29), which was necessary to conclude (26). Because
both (25) and (26) hold, we can conclude that in Bagger, INIT — TERM.

11 Related Work

In this section we discuss independent research focusing on the formal verification of rule-based
expert systems. The informal approaches referenced in Section 1 will not be presented. Though
they are significant in the overall process of verification and validation of real-world expert systems,
their philosophy is somewhat removed from the formal approaches.

11.1 Experimental Approaches to Development

In many applications, rules that emulate an expert’s decision process can be easily generated to
form a prototype system. These early versions of an expert system are often developed without
the benefit of complete specifications. The specifications become more defined through repeated
interaction between users, designers, and experts. Often multiple designers perform different work
on the system not knowing fully what has been done by others.

The problems caused by this experimental development methodology relate directly to the
difficulties of validation and verification. First, due to the absence of initia] specifications, the
system cannot be fully verified early in its development. Validation and verification during this



29

time is done by letting the expert see what the system outputs. Second, if different people write
different portions of the system, one designer is often unaware of rule dependencies used by another
and may inadvertently destroy those dependencies or create redundant rules or rules that yield
conflicting information. Finally, because there is no incremental validation and verification, if is
difficult to subject a large cumbersome system to stringent testing, be it of a formal or informal
nature.

We have taken the position that systems developed using an experimental methodology are
likely to be less reliable than systems developed incrementally with validation and verification
applied at each step. The reasoning is that if, after the fact, informal methods of validation and
verification are used, then reliability can not be fully guaranteed, and if formal methods are used,
proofs will be extremely cumbersome. Also, the systematic application of verification techniques
during program development often provides valuable insight into the nature of the computation
and the required rules.

It is highly unlikely thaf some minimal characterization of the input and output of an expert
system cannot be given for initial development. Specifications centered around these character-
izations can be formulated. For example, termination may be one of these initial specifications.
Then, prior to the system being evaluated by the expert, the program can be shown to meet the
specifications. As the designers build upon the system by adding rules and incorporating new data
structures, they should ensure that the changes do not violate the current specifications. As the
specifications become more defined, the program will have to reevaluated the rules in order to
guarantee they maintain the new specifications. We contend that it is this type of methodology
that must be used for those rule-based systems from which reliability is demanded.

11.2 Swarm Program Development

Swarm was initially developed to serve as a vehicle for investigating the shared dataspace ap-
proach to concurrent computation [25]. This research was motivated by the view that the content-
addressable approach seemed to encourage higher degrees of concurrency and more flexible connec-
tions of components, but verification techniques for such languages were not yet developed. The
results of the investigation up to this point show that Swarm has the ability to bring a variety of
programming paradigms such as shared variable and message passing under a single unified model.
It was recognized early on that because of its content-addressable nature and the use of rules to
transform program states, verification results could be transferred to rule-based languages within
the Swarm framework [7, 25]. These ideas later became more concrete when it was shown that the
class of sequential pure rule-based programs were a proper subset of the class of Swarm programs
[10]. Because of these properties, Swarm has been a useful vehicle for this investigation.

In the following sections we present two other independently developed approaches to formal
verification, one that focuses on safety properties alone and one that transforms a rule-based pro-
gram into a guarded iteration. The advantages of Swarm are its generalits and its proof logic that
eliminates the need to consider the history of rule executions. Though in the previous sections we
have presented some complex proofs, they have relatively the same complexity as similar proofs in
the alternative approaches to be presented.

Because there are other resources in Swarm not yet tapped by the rule-based programming
paradigm, there is still more investigation needed. For example, Swarm can be used to specify
synchronous and asynchronous processing modes, and can accommodate highly dynamic program
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and data structures, possibilities not fully explored in rule-based programming. Swarm also provides
an environment for investigating new methodologies for developing rule-based programs. Owur
research into the verification of rule-based programs stems from the ease of using Swarm and
applying its proof theory, and the desire to investigate further how concurrency can be exploited
in these programs.

11.3 The Use of Invariants

Rushby and Whitehurst [27] cite several common reasons why they believe that expert systems are
not amenable to formal verification: the specifications are normally vague; the current development
methodology (as discussed in Section 11.1) is experimental in nature; conventional verification is
difficult to apply because it is concerned with algorithmic software; the current rule-based languages
have not been developed with formal analysis in mind. Their paper addresses each of these reasons
by giving an example of how invariants can be used for verification in certain classifications of
expert system programs. They use their own rule-based language to facilitate the formulation of
the program, combined with an automated theorem prover to verify the invariants, once they are
defined.

They rely on the axiomatic rule for an invariant over an if-then statement. Using only pure
rule-based system programs, they attempt to prove the invariant for every rule in the system, and
guarantee that it is true for valid inputs. The invariants defined are those that verify the minimum
competency requirements of a program. These requirements differ from service requirements, which
are assumed to be easily subjected to formal verification as in conventional software. Competency
requirements represent the vague requirements of a expert system that relate to how the expert
quantifies output. Competency requirements are further divided into those that are desired, such
as wanting an optimal solution, and those that are minimum, such as a bound on how bad the
results can be before the system is considered unreliable.

To utilize and express minimum competency requirements as safety properties in a rule-based
expert system program, they first classify the application areas where these programs may be
useful into two categories, bounded constraint satisfaction and model inversion. To solve a bounded
constraint satisfaction problem, it is necessary to find an assignment of values to the variables that
satisfy the bounded constraint defines how far an acceptable solution can be from optimal. They
believe that expert systems concerned with applications such as planning, scheduling, configuration
and design can be formulated as bounded constraint satisfaction problems in which the invariant
specifies the bounded constraint on the output. The model inversion problem is described as finding
the causes (identified as the inputs to the system) that explain observed effects (the outputs of the
system). If heuristics are used to suggest valid input values, Rushby and Whitehurst believe that
expert systems concerned with applications such as monitoring equipment and fault diagnosis can
be characterized as model inversion problems, where the model that is inverted must constructed
explicitly to produce the specifications. The invariant for this problem specifies that the “effect”
from certain “causes” must be supported by the explicit model that is created, in which it is stated
that these “causes” produce the “effect.”

They recognize that due to the restricted formulation of constraint satisfaction and model
inversion problems, general expert systems exhibit betler performance. They contend that the use
of constraint satisfaction and model inversion problem formulations are necessary if reliable expert
systems are to be developed.
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11.4 Reduction to Guarded Iteration

Waldinger and Stickel [32] do not advocate a change in the current development methodology of
rule-based expert systems. Their goal is to subject final programs, in the form of pure rule-based
programs, to formal verification using an automated theorem prover. A set of criteria is given to
define the correct behavior of a rule-based program, i.e., that the program obeys a given set
of specifications. Each of these criteria is called a validation task. For every positive validation
task, there is a negative counterpart.

Verification: A property is proven to be always satisfied.

Fault detection: Exhibiting an input that causes a system to fail to satisfy
a given condition.

Termination: Proving that a system will always terminate.

Loop detection: Exhibiting an input that will cause a system to fail
to terminate.

Firing: Exhibiting an input that causes a given rule to fire.

Unreachability: Proving that no input will cause a given rule to fire.

Consistency: Proving that no input can produce an inconsistent
working memory.

Inconsistency: Exhibiting an input that will produce an inconsistent

working memory.

They use a deductive approach to performing each of the validation tasks defined above. A con-
jecture is associated with each validation task. If the validity of the conjecture can be established
in the system theory, then the associated validation task is performed. To prove their conjectures
Waldinger and Stickel [32], use a model and notation similar to OPS5, but without conflict resolu-
tion. For a given system of rules, a system theory is developed. The system theory is defined by
a set of axioms that express the actual behavior of the system. As in Swarm, the approach taken
by Waldinger and Stickel treats working memory as a variable that is changed as rules are exe-
cuted. The execution of the inference mechanism is reduced to an iteration of guarded commands
[8]. Specifically, a rule system is defined as an unordered set of rules. A rule system is applied
to a working memory by repeatedly applying any of the rules (selected nondeterministically) to
working memory until no rule can be applied, i.e. satisfied. The final working memory is the result
of applying the system.

An axiom based on Dijkstra’s weakest precondition [8] is formulated for each rule in the rule
system, where each predicate symbol in a rule is represented by a function symbol in the system
theory. A function is defined that returns the result of working memory after a rule is applied. The
entire system is applicable to a working memory if some rule in the system with some instantiation is
applicable. A working memory to which no rule is applicable is called the final working memory. A
history is defined as a description of a finite initial segment of a possible computation of the system.
A history is applicable to a working memory if there is a finite sequence of working memories such
that each memory is obtained from the previous one by applying the corresponding rule from the
history. A history is called a terminating history if applied to the initial working memory results
in the final working memory. The axioms for defining the rules that form a history, defining the
working memory that results by applying a history, and defining a terminating history are all biased
toward the use of an automated theorem prover.
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One of their goals for this research is to go beyond the simple yes/no answer to whether or
not a conjecture can be established. They wish to identify the faults of the system by extracting
information out of the proof process. This may be done if the proof is restricted to be sufficiently
constructive, allowing the extraction of a description of a case in which the condition to be proven
fails to hold; basically, an example is constructed. To prove the negative validation tasks, they
either attempt to prove that the positive condition does not hold, or find an example. Not all
validation conjectures put forward can be satisfied. For example, they have not yel experimented
with proving nontermination.

12 Discussion and Conclusion

This paper presents an assertional approach to the verification of a class of rule-based programs
characterized by the absence of conflict resolution. The verification method is borrowed directly
from work in concurrent programming. We show how program specifications are expressed as
safety and progress properties. These properties are then classified according to their relation to
the original problem specification and to the actual program. A toy example program illustrates
the use of safety and progress properties to express the desired requirements to be met by the
program. Proofs of certain properties give the reader an idea of how verification is accomplished.
Some of these proofs show the complexity involved in formally verifying a rule-based prograin.

One purpose of this paper is to take an already formulated program, Bagger [33], show that it
can be encoded in the formal Swarm language, that its specifications can be expressed as safety and
progress properties, and that the Swarm proof theory can be applied to this domain by showing
Bagger satisfies its specifications. From this exercise, another purpose emerged; showing that a
new development methodology is necessary to incorporate formal verification.

We recognize that development techniques for experts systems cannot change overnight, but
changes will have to be made if reliable expert systems are to become commonplace. If we were to
develop Bagger from its specification and incrementally apply verification techniques, immediate
improvements would be made to the program. First, using a single task per item type makes the
tasks more regular, i.e., disallowing one task to bag frozen and non-frozen items of the same size.
This improvement reduces the complexity of the proof of Property 14, in which two functions must
be used to relate the task to the value of the step tuple and to relate the item type to its bag
ordering. By making each task responsible for one item type, only one function is needed. Alsa, it
is feasible to create a bag and place something in that bag during the same rule execution. This
change is also suggested by the proof of Property 14, in which an otherwise unnecessary predicate
‘fits’ must be used. Another improvement would be to utilize a single context switching rule. Each
of these improvements are due to the insight provided by the proof. After verifying the program, if
we were to add rules or entire tasks, these changes would have to be incorporated into the proofs.
But such incremental changes are not nearly as complex as proving the properties after the program
is assumed to be complete. Also, with incremental development and verification, error in the rules
or working memory can be detected and corrected more easily.

The original Bagger program was geared toward the use of conflict resolution. A task can easily
bag frozen and non-frozen items of the same size by using the specificity rule. Then there would
be no need for extra context switching, as there would be in our changes above. This brings up
several important points. First, how important is the role of conflict resolution in rule-based expert
systems? What do we lose by eliminating the use of conflict resolution for the sake of achieving
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reliability through the application of formal verification methods? Finally, can we extend program
verification techniques to cover those forms of conflict resolution that appear to be essential to
rule-based programming? As seen in Section 11, it is generally acceptable to use programs that
do not rely on conflict resolution for the purpose of formal verification. Rushby and Whitehurst
[27] believe a pure rule-based program gives only the approximate semantics, but can still be used
effectively. Waldinger and Stickel [32] believe that only certain types of conflict resolution interfere
with correctness, and those can be simulated explicitly in the LHS of the rules. We believe that
conflict resolution has merit in sequential rule-based expert systems in both the execution efficiency
and the development process. Therefore, we are analyzing the goals that conflict resolution meets
in order to better answer the previous questions. Initially we are looking for ways to incorporate
the conflict resolution strategies already within a rule-based program to be proven reliable by:
(1) formalizing translation rules to transform a program that relies on conflict resolution into a
pure rule-based program, and (2) translating the program and its conflict resolution strategy into
Swarm, and formalizing the strategy in Swarm, thus eliminating the need for the original program
to be a pure rule-based program.

Execution speed is another problem plaguing rule-based expert systems. Slow speed bars such
systems from being utilized in many domains. Large programs are too slow to be useful in most
real-world applications. Work is ongoing to use parallel computation as a possible scalable solution
to the problem. This solution is plausible because most expert systems are complex enough to
have tasks which can execute independently from one another, as well as rules which can execute
in parallel. For example Gupta [14] and Miranker {20] have developed parallel matching strategies
to speed up one portion of the execution process. Others, such as Ishida and Stolfo [15], Schmolze
[28], Pasik [23] and Kuo [16] have attempted to produce speed up by parallel rule executions
during another portion of the execution process of a rule-based system, but it is difficult to extract
parallelism when there is none. Such systems are concerned with the parallel implementation of
existing sequential systems.

By contrast, our research is directed toward the formal derivation of rule-based programs that
exploit concurrency [26]. Ongoing work is based on deriving programs from their specifications
with an eye on concurrency. The derivation includes guaranteeing the program obeys the specifi-
cations even as they are updated during the derivation. Heuristic derivation techniques borrowed
from research in program derivation will be applied to this domain. Problems such as minimiz-
ing contention and rule interference will be addressed, along with the role of conflict resolution
techniques in concurrent programs. Our hope is to derive highly concurrent reliable rule-based
programs capable of being executed on a variety of parallel architectures.
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A More Proofs of Swarm Bagger

‘I'his appendix contains the proofs of those properties stated earlier in the paper, but not proven.
The properties retain the same numbering and categorization as in the previous sections.

A.1 Structural Constraints

Property 5: inv [¥ N : current(N) : 1] = 1
There is exactly one current tuple always present in working memory.

The invariant holds initially by definition of INIT. Only a creator transaction can violate the
invariant. In these transactions, the tuple current{IN) for some N is deleted if and only if cur-
rent(IN4-1) is reasserted into the tuple space. Thus, the invariant is preserved.

Property 6: inv [V N :: [© W,A : bag(NJW,A) = 1] < 1]
The bags are identified by a unique natural number.

The invariant holds initially because there are no bag tuples. The invariant can be violated if
a transaction asserts a bag(N,W?,A’) for some N,W’ and A’, when bag(N,W,A) exists. Packer
transactions delete bag(IN,W,A) if and only if bag(IN,W?,A?) is asserted, and hence the invari-
ant is preserved. Creafor transactions assert bag(N,0,<>) and current(N). The value of N in
current(IN) is incremented after each successful execution of a creafor transaction. To show the
invariant holds it must be shown that N is a unique identification number when bag(N,0,<>) is
asserted. This is done by proving the following lemma.

Lemma 3 The value of N, in the tuple current(N), is non-decreasing.
current(N) unless current(N - 1) for all N

Packer and creator transactions maintain the LHS of the unless and switcher transac-
tions either maintain the LHS or establish the RHS. End of Lemma 4.

Since the value of N in current(IN) does not decrease, but increases only when a new bag tuple
is to be asserted, the identifications numbers are unique.

Property 7: inv [V NNWA = bag(N,WA) = VM: 1< M Nz [FWLA bag(M,W’,A"N]]]
The bags are ordered sequentially, beginning with the number 1.

Initially there are no tuples of type bag(N,W,A) for any N,W and A, and current(0) exists
in the tuple space.

Lemma 4 The value of N in the tuple current(IN) dictates the identification numbers of bags.

[V N,M,W,A : current(N) « bag(M,W,A) A M < NJ
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New tuples of type bag(M,W,A) for some M,W,A can only be asserted by switcher
transactions. A switcher transaction asserts bag(N,0,<>) if and only if it asserts
current(IN). There is only one current(IN) tuple as stated in Property 5. By lemma
3, the value of N in current(IN) is non-decreasing and when it does increase, it does
so sequentially. Thus, all bags created must have an identification number of at most
N for current(IN).

Using lemma 4, we know that the value of N in the tuple current(N) dictates the bag identi-
fication number. If a creator transaction with precondition current(IN) is successful, it asserts
bag(N+1,0,<>) and current(IN-+1), causing the numbers to be in sequential order.

A.2 Behavioral Constraints

Property 8: inv [V ILN,n :: stable placed-in(I,N,n)]
A bagged item remains bagged in the same bag and in the same position
in that bag.

where placed-in(I,N,n) is defined in Section 6, under the description of Property 3.

Given LN,n. Assume [3 W,A :: bag(N,W,A) A A = ]], there are 3 parts to show for the proof:
(i) no bag tuples are deleted from the tuple space, (ii) the contents of a bag are not deleted, and
(iii) items do not change positions with in a bag. Lemmas 1, 2, and 3 provide the proofs to each
part respectively.

Lemma 5 Once a bag exists, it continues to exist.
[V N :: stable [3 W,A :: bag(N,W,A)]]

Assume for some N,W and A, bag(N,W,A) exists. A creator transaction deletes
bag(N,W,A) if and only if for some W’ and A’, bag(IN,W*,A?) is asserted, where W
# W’ and A # A’. No other transactions modify a tuple of type bag(IN,W,A). Thus,
the lemma holds. End of Lemma 5.

Lemma 6 The contents of a bag are never deleted.

[VN,o =
[3 W,A : bag(N,W,A) i1 A = q]
unless
A WAT:item(I) A bag(N,W,A) : A=ael]]

All creator and switcher transactions maintain the LHS of the lemma. Packer transac-
tions either maintain the LHS or establish the RHS. End of Lemma 6.

Lemma 7 The positions of the items in a bag are never changed.
[V N,a :: stable [ W,A : bag(N,W,A) :: ais a prefix of A] ]

Only packer transactions alter the contents of A by adding an item to A, but they do
not change o. End of Lemma 7.
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A.3 Output Constraints

Property 11: Invariant [V N,W,A : bag(N,W,A) = W < mazwgi]
At any time, the weight of every bag cannot exceed the mazimum
wetght allowed.

Initially there exists no N,W and A such that bag(IN,W,A) is in the tuple space. Possi-
ble violating transactions could be either packer or switcher transactions. Given the existence of
bag(N,W,A) for some N,W and A, such that W < mazwgl. Given I, such that unbagged(X),
and Am # Ifor 1 <n < |A]. Assume W + weight(I) > mazwgt. For

bag(N,W 4 weight(I), A ¢ I)

to be asserted into the tuple space, it must be true that W < mazwgt - weight(I). Therefore, I would
not be added to bag(N,W,A) by a packer transaction. Switcher transactions assert bag(IN,0,<>)
for some N. Therefore, the invariant is maintained.

Property 12: inv [V NN’ W, W, A A’ : bag(N,W,A) A bag(N' W A) AN < NAA # <>
i W+ weight(A.1) > mazwgi
The first item in bag N, does not fit in any bag M < N.

where weight(I) is defined as follows.
Definition 5 The weight of an item.
[V I:item(I) :: weight(I) = [ C,W,F : grocery(I,C,W,F) = W]]

Switcher transaction have no effect on bag tuples. Creator transactions cannot violate the
invariant because they create only empty bags. Only packer transactions can violate the invariant.
We assume the invariant holds prior to the execution of a packer transaction. Given unbagged(I)
and bag(IN,W,A) exist in the tuple space, where N = [max X,Y,Z : bag(X,Y,Z) = X], there are
three computation states that can occur prior to the execution of a packer transaction. We rely on
Properties 6, 7, and 11.

Case (i):
If A# <>and
[3 T,U,V: bag(T,UV} AT < N =2 U + weight(I) < mazwgt]
then the invariant is not violated because a successful packer transaction
cannot place I in the first position of any bag.

Case(ii):
If A# <>and
[V T,U,V : bag(T,U,V) :: U + weight(I) > mazwgi]
then no packer transaction is successful and the invariant is not violated.

Case(iii):
IfA=<>and
[3X,Y,Z : bag(X,Y,Z) A X < N 2 Y + weight(I) < mazwgi]
then a packer transaction can violate the invariant by adding I to A
when there exists a bag with room for I.
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To show the invariant is not violated, we must show case (iii) cannot occur. We utilize the
definitions of min-f, min-f-item, and min-f-bagger from the proof of Property 10 in Section 8. We
know from this proof that a successful packer transaction that places an item in a bag is min-
f-bagger, and this transaction packs min-f-item. Thus, the proof that case (iii) cannot occur is
formulated as the following proof obligation.

invariant [V N :: bag(N,0,<>) =
Y M,W,A : bag(M,WA)AM < N (12.1)
2 W+ weight(min-f-item) > mazwgi]]

Initially, there are no bag tuples so the invariant holds. To prove the invariant is preserved, we
have to show that those transactions that (1) make bag(N,0,<>) true, (2) cause W + weight(min-i-
item) to be less than maeswgt, and (3) cause min-f-item to be undefined, do not violate the invariant.

Creator transactions can cause bag(IN,0,<>) to become true. The precondition of all creator
transactions can be stated more generally as

step(B) A g(f(1)) = B A [Y M,W,A : bag(M,W,A) = W + weight(I) > mazwgf] A current(N)

Therelore, if a creator transaction is successful causing bag(IN,0,<>) to be true, the RHS of the
implication in (12.1) is also true.

Packer transactions may cause the RHS of the implication in (12.1) to become false if (a) the
weight of any bag(M,W,A) with M < N decreases, (b) the weight of min-f-item decreases such
that the weight of bag(M,W,A) where M < N can hold min-f-item or (¢} min-f-item becomes
undefined. We assume the invariant holds before the execution of a packer transaction (which must
be min-f-bagger as shown earlier).

For case (a), there are no transactions that decrease the weight of a bag. For case (b), no
transaction decreases the weight of an item directly. In order for the weight of min-f-item to
decrease, the program state prior to the execution of min-f-bagger must include

I = min-f-item A [Z J : unbagged(J) A f(J) = min-f:: 1] = 1

After successful execution of min-f-bagger, bagged(I) is true and weight(min-f-item) < weight(I).
But, since the invariant is also a precondition of the transaction that bags I (previously min-f-
bagger), “bag N” was the only bag that could hold I. Thus, I can only be placed in “bag N7,
maintaining the invariant.

For case (c), a packer transaction cannot be successful unless there is a tuple of type un-
bagged(I) for some Iin the tuple space. If min-f-bagger is successful and packs the final unbagged
item, we have shown the invariant to hold because the LHS is false. A creator transaction cannot
make bag(N,0,<>) true unless there is an unbagged item left, thus it also does not violate the
invariant.

Since the invariant of (12.1) is preserved, we have proven case (iil) cannot occur, which shows
Property 12 is also preserved.
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A.4 Output Generation

Property 14: [V N : current(N) A [3 I : unbagged(I)
[V M,W,A : bag(M,WA)A M <N
2 weight(I) + W > mazwgl] |
—
current(N+1) A bag(N+1,0,<>)]
Bags are created when needed.

Using the definition of min-f and min-f-item from the proof of Property 10, we know that
[V I: unbagged(T) :: weight(min-f-item) > weight(I)]

Then we only have to prove Property 14 when min-f-item doesn’t fit in any bag, We know from
Property 5 that there is only one tuple of type current(IN) for all N in the tuple space at all times
and that from lemma 4

[V NM,W.A = current(N) = bag{M,W,A) A M < N]
From these properties, the proof obligation can be restated as

current(N) A [3 I : unbagged(I)
o [V M,W,A : bag(M,W,A)
i: weight(min-f-item) + W > mazwgi]]
— (14.1)
current(N+1} A bag(N+1,0,<>)

for all N. We rely on Lemma 1 in the proof of Property 10 and Lemma 2 in the proof of Property
16 and break the proof into two steps. First we show that for all Nand 1 < B < 4

current(N) A [3 I: unbagged(I)
2 [V M,WA : bag(M,W,A)
i weight(min-f-item) + W > mazwgi]
A step(B) A B < g(min-f)
— (14.2)
step(B) A B = g(min-f)

and then we show that

current(N) A [3 I : unbagged(T)
i [V M,W,A : bag(M,W,A)
:: weight(min-f-item) + W > mazwgi]
A step(B) A B = g(min-f)
— (14.3)
current(N+1) A bag(N+1,0,<>)

To show (14.2), we must show that in this case the value of B in step(B) increases by one until B
= 4. Then, since g(min-f) < 4 by definition, B will eventually equal 4.
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current(N) A [3 I : unbagged(T)
i [V M,W,A : bag(M,W,A)
r weight(min-f-item) + W > mazwgi]
A step(B) A B < g(min-f)
ensures (14.4)
step(B+1)

Both packer and creator transactions maintain the LHS of the ensures, and switcher transac-
tions either maintain the LHS or establish the RHS, depending on the value of g(min-f). Thus, the
unless part of the proof holds. If B < g(min-f) then by definition of min-f we have

[VI:g(l)= B : -unbagged(I)]

and we know 1 < B < 3 by INIT and earlier invariants. There exists a switcher transaction for
step(B) such that 1 < B < 3. Thus, at least one swifcher transaction will be successful on the
next execution step, establishing the RHS of (14.4). Using the transitive property of leads-to and
(14.4), we establish (14.2).

The next step of the proof is to show (14.3) holds. This property can be restated as follows.

current(N) A ~fits(min-f-item,B)
ensures (14.5)
current{N+1) A bag(N+1,0,<>)

Packer and switcher transactions maintain the LHS of the ensures. Depending on the value of B,
a creator transaction will either maintain the LHS or establish the RHS of (14.5), and at least one
creator will establish the RHS on the next execution step.

Property 15: [V N = bag(N,0,<>) +— [I W,A : bag(N,W,A) = W > 0A A # <>]]
FEventually every bag has at least one item.

We know by (12.1) in the proof of Property 12 that
invariant [V N :: bag(N,0,<>) =
[V M,W,A : bag{M,WA)AM < N (12.1)
2 W + weight(min-f-item) > mazwgi]]
We need another invariant given in the following lemma.
Lemma 8 The identification number of an empty bag equals the value of N in current(N).

invariant [V N :: bag(N,0,<>) = current(N)]

A creator transaction is the only transaction that can violate the invariant. But this
transaction, if successful, makes bag(N,0,<>) true if and only if current(IN) is made
true, for some N. thus, the invariant is preserved. End of Lemma 8.

Using (12.1) and lemmas 4 and 8, we can restate Property 15 as the following ensures relation.
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bag(N,0,<>) A current(N)

A Y M,WA : bag(M,W,A) AM < N :: W + weight(min-f-item) > mazwgi]
ensures (15.1)
[3 W2A? : bag(NJW,A) 2t W > 0 A A # <>

for all N. If a switcher transaction is successful, the LHS will be maintained. A creator transaction
cannot be successful, so again the LHS of the ensures is maintained. All packer transactions except
min-f-bagger also maintain the LHS. However, min-f-bagger establishes the RHS. Therefore, the
ensures holds, proving Property 15.
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