57,876 research outputs found

    Deducing the Multi-Trader Population Driving a Financial Market

    Get PDF
    We previously laid out a framework for predicting financial movements and pockets of predictability by deducing the heterogeneity in the multi-agent population in temrs of trader types playing in an artificial financial market model [7]. This work explores extensions to this basic framework. We allow for more intelligent agents with a richer strategy set, and we no longer constrain the estimate for the heterogeneity over the agents to a probability space. We then introduce a scheme which accounts for models with a wide variety of agent types. We also discuss a mechanism for bias removal on the estimates of the relevant parameters

    Symmetry energy from fragment observables in the canonical thermodynamic model

    Full text link
    Different formulas relying measurable fragment isotopic observables to the symmetry energy of excited nuclei have been proposed and applied to the analysis of heavy ion collision data in the recent literature. In this paper we examine the quality of the different expressions in the framework of the McGill Canonical Thermodynamic Model. We show that even in the idealized situation of canonical equilibrium and in the absence of secondary decay, these formulas do not give a precise reconstruction of the symmetry energy of the fragmenting source. However, both isotopic widths and isoscaling appear very well correlated to the physical symmetry energy.Comment: Submitted to Physical Review

    Phase diagram for the asymmetric nuclear matter in the multifragmentation model

    Full text link
    We assume that, in equilibrium, nuclear matter at reduced density and moderate finite temperature, breaks up into many fragments. A strong support to this assumption is provided by date accumulated from intermediate energy heavy ion collisions. The break-up of hot and expanded nuclear matter according to rules of equilibrium statistical mechanics is the multifragmentation model. The model gives a first order phase transition. This is studied in detail here. Phase-equilibrium lines for different degrees of asymmetry are computed.Comment: 22 pages, 10 figure

    Hyperfine splittings in the bbˉb\bar{b} system

    Full text link
    Recent measurements of the ηb(1S)\eta_b(1S), the ground state of the bbˉb\bar{b} system, show the splitting between it and the \Up(1S) to be 69.5±\pm3.2 MeV, considerably larger than lattice QCD and potential model predictions, including recent calculations published by us. The models are unable to incorporate such a large hyperfine splitting within the context of a consistent description of the energy spectrum and decays. We demonstrate that in our model, which incorporates a relativistic kinetic energy term, a linear confining term including its scalar-exchange relativistic corrections, and the complete one-loop QCD short distance potential, such a consistent description, including the measured hyperfine splitting, can be obtained by not softening the delta function terms in the hyperfine potential. We calculate the hyperfine splitting to be 67.5 MeV.Comment: 5 pages, 3 tables, text revision

    Contact and crack problems for an elastic wedge

    Get PDF
    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex

    Viscoelastic Multicomponent Fluids in confined Flow-Focusing Devices

    Full text link
    The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the "lattice Boltzmann models" (LBM). Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) and droplet formation downstream of the cross-junction (DC) (Liu & Zhang, Phys.Fluids.{\it Phys. Fluids.} 23{\bf 23}, 082101 (2011)). Viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel.Comment: 4 pages, 2 figures, AIP Conference Proceedings, 201
    corecore