76 research outputs found

    Performance Evaluation of Vision-Based Algorithms for MAVs

    Get PDF
    An important focus of current research in the field of Micro Aerial Vehicles (MAVs) is to increase the safety of their operation in general unstructured environments. Especially indoors, where GPS cannot be used for localization, reliable algorithms for localization and mapping of the environment are necessary in order to keep an MAV airborne safely. In this paper, we compare vision-based real-time capable methods for localization and mapping and point out their strengths and weaknesses. Additionally, we describe algorithms for state estimation, control and navigation, which use the localization and mapping results of our vision-based algorithms as input.Comment: Presented at OAGM Workshop, 2015 (arXiv:1505.01065

    Relative Pose Estimation for Multi-Camera Systems from Affine Correspondences

    Get PDF
    We propose four novel solvers for estimating the relative pose of a multi-camera system from affine correspondences (ACs). A new constraint is derived interpreting the relationship of ACs and the generalized camera model. Using the constraint, it is shown that a minimum of two ACs are enough for recovering the 6DOF relative pose, i.e., 3D rotation and translation, of the system. Considering planar camera motion, we propose a minimal solution using a single AC and a solver with two ACs to overcome the degenerate case. Also, we propose a minimal solution using two ACs with known gravity vector, e.g., from an IMU. Since the proposed methods require significantly fewer correspondences than state-of-the-art algorithms, they can be efficiently used within RANSAC for outlier removal and initial motion estimation. The solvers are tested both on synthetic data and on real-world scenes from the KITTI benchmark. It is shown that the accuracy of the estimated poses is superior to the state-of-the-art techniques

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods

    Purposive sample consensus: A paradigm for model fitting with application to visual odometry

    Full text link
    © Springer International Publishing Switzerland 2015. ANSAC (random sample consensus) is a robust algorithm for model fitting and outliers' removal, however, it is neither efficient nor reliable enough to meet the requirement of many applications where time and precision is critical. Various algorithms have been developed to improve its performance for model fitting. A new algorithm named PURSAC (purposive sample consensus) is introduced in this paper, which has three major steps to address the limitations of RANSAC and its variants. Firstly, instead of assuming all the samples have a same probability to be inliers, PURSAC seeks their differences and purposively selects sample sets. Secondly, as sampling noise always exists; the selection is also according to the sensitivity analysis of a model against the noise. The final step is to apply a local optimization for further improving its model fitting performance. Tests show that PURSAC can achieve very high model fitting certainty with a small number of iterations. Two cases are investigated for PURSAC implementation. It is applied to line fitting to explain its principles, and then to feature based visual odometry, which requires efficient, robust and precise model fitting. Experimental results demonstrate that PURSAC improves the accuracy and efficiency of fundamental matrix estimation dramatically, resulting in a precise and fast visual odometry

    Relative Pose from Deep Learned Depth and a Single Affine Correspondence

    Get PDF
    We propose a new approach for combining deep-learned non-metric monocular depth with affine correspondences (ACs) to estimate the relative pose of two calibrated cameras from a single correspondence. Considering the depth information and affine features, two new constraints on the camera pose are derived. The proposed solver is usable within 1-point RANSAC approaches. Thus, the processing time of the robust estimation is linear in the number of correspondences and, therefore, orders of magnitude faster than by using traditional approaches. The proposed 1AC+D solver is tested both on synthetic data and on 110395 publicly available real image pairs where we used an off-the-shelf monocular depth network to provide up-to-scale depth per pixel. The proposed 1AC+D leads to similar accuracy as traditional approaches while being significantly faster. When solving large-scale problems, e.g., pose-graph initialization for Structure-from-Motion (SfM) pipelines, the overhead of obtaining ACs and monocular depth is negligible compared to the speed-up gained in the pairwise geometric verification, i.e., relative pose estimation. This is demonstrated on scenes from the 1DSfM dataset using a state-of-the-art global SfM algorithm. Source code: https://github.com/eivan/one-ac-pos

    Using Multi-view Recognition and Meta-data Annotation to Guide a Robot's Attention

    Get PDF
    In the transition from industrial to service robotics, robots will have to deal with increasingly unpredictable and variable environments. We present a system that is able to recognize objects of a certain class in an image and to identify their parts for potential interactions. The method can recognize objects from arbitrary viewpoints and generalizes to instances that have never been observed during training, even if they are partially occluded and appear against cluttered backgrounds. Our approach builds on the implicit shape model of Leibe et al. We extend it to couple recognition to the provision of meta-dat

    Using the properties of Primate Motion Sensitive Neurons to extract camera motion and depth from brief 2-D Monocular Image Sequences

    Get PDF
    Humans and most animals can run/fly and navigate efficiently through cluttered environments while avoiding obstacles in their way. Replicating this advanced skill in autonomous robotic vehicles currently requires a vast array of sensors coupled with computers that are bulky, heavy and power hungry. The human eye and brain have had millions of years to develop an efficient solution to the problem of visual navigation and we believe that it is the best system to reverse engineer. Our brain and visual system appear to use a very different solution to the visual odometry problem compared to most computer vision approaches. We show how a neural-based architecture is able to extract self-motion information and depth from monocular 2-D video sequences and highlight how this approach differs from standard CV techniques. We previously demonstrated how our system works during pure translation of a camera. Here, we extend this approach to the case of combined translation and rotation

    Correspondência eficiente de descritores SIFT para construção de mapas densos de pontos homólogos em imagens de sensoriamento remoto

    Get PDF
    Métodos automáticos de localização de pontos homólogos em imagens digitais baseados em área, combinados com técnicas de crescimento de região, são capazes de produzir uma malha densa e exata de pontos homólogos. Entretanto, o processo de crescimento de região pode ser interrompido em regiões da imagem, cuja paralaxe no eixo horizontal apresenta variação abrupta. Essa situação geralmente é causada por uma descontinuidade na superfície ou espaço-objeto imageado, tal como um prédio numa cena urbana ou um paredão de exploração de uma mina a céu aberto. Nesses casos, novos pares de pontos homólogos (sementes) devem ser introduzidos, normalmente por um operador humano, a partir dos quais o processo é reiniciado. Dependendo do tipo da imagem utilizada e da estrutura 3D da região mapeada, a intervenção humana pode ser considerável. Uma alternativa totalmente automatizada em que se combinam as técnicas SIFT (Scale Invariant Feature Transform), pareamento por mínimos quadrados e crescimento de região foi proposta anteriormente pelos autores. O presente trabalho apresenta uma extensão a essa técnica. Basicamente, propõem-se alterações na etapa de correspondência do SIFT, que exploram características de estereogramas produzidos por sensores aéreos e orbitais. Avaliações experimentais demonstram que as modificações propostas trazem dois tipos de benefícios. Em primeiro lugar, obtém-se um aumento do número de pontos homólogos encontrados, sem aumento correspondente na proporção de falsas correspondências. Em segundo lugar, a carga computacional é reduzida substancialmente
    corecore