264 research outputs found

    VirulĂŞncia de amostras de Mycoplasma synoviae isoladas no Brasil.

    Get PDF
    bitstream/item/58661/1/CUsersPiazzonDocuments186.pd

    Point Defects in Two-Dimensional Indium Selenide as Tunable Single-Photon Sources

    Get PDF
    In the past few years remarkable interest has been kindled by the development of nonclassical light sources and, in particular, of single-photon emitters (SPE), which represent fundamental building blocks for optical quantum technology. In this Letter, we analyze the stability and electronic properties of an InSe monolayer with point defects with the aim of demonstrating its applicability as an SPE. The presence of deep defect states within the InSe band gap is verified when considering substitutional defects with atoms belonging to group IV, V, and VI. In particular, the optical properties of Ge as substitution impurity of Se predicted by solving the Bethe-Salpeter equation on top of the GW corrected electronic states show that transitions between the valence band maximum and the defect state are responsible for the absorption and spontaneous emission processes, so that the latter results in a strongly peaked spectrum in the near-infrared. These properties, together with a high localization of the involved electronic states, appear encouraging in the quest for novel SPE materials

    First-Principles Calculations of Exciton Radiative Lifetimes in Monolayer Graphitic Carbon Nitride Nanosheets: Implications for Photocatalysis

    Get PDF
    In this work, we report on the exciton radiative lifetimes of graphitic carbon nitride monolayers in the triazine-based (gC3N4-t) and heptazine-based (gC3N4-h) forms, as obtained by means of ground-state plus excited-state ab initio calculations. By analyzing the exciton fine structure, we highlight the presence of dark states and show that the photogenerated electron-hole (e-h) pairs in gC3N4-h are remarkably long-lived, with an effective radiative lifetime of 260 ns. This fosters the employment of gC3N4-h in photocatalysis and makes it attractive for the emerging field of exciton devices. Although very long intrinsic radiative lifetimes are an important prerequisite for several applications, pristine carbon nitride nanosheets show very low quantum photoconversion efficiency, mainly due to the lack of an efficient e-h separation mechanism. We then focus on a vertical heterostructure made of gC3N4-t and gC3N4-h layers, which shows a type-II band alignment and looks promising for achieving net charge separation

    Active Surface Structure of SnO2 Catalysts for CO2 Reduction Revealed by Ab Initio Simulations

    Get PDF
    Tin oxide (SnO2) is an efficient catalyst for the CO2 reduction reaction (CO2RR) to formic acid; however, the understanding of the SnO2 surface structure under working electrocatalytic conditions and the nature of catalytically active sites is a current matter of debate. Here, we employ ab initio density functional theory calculations to investigate how the selectivity and reactivity of SnO2 surfaces toward the CO2RR change at varying surface stoichiometry (i.e., reduction degree). Our results show that SnO2(110) surfaces are not catalytically active for the CO2RR or hydrogen evolution reaction, but rather they reduce under an applied external bias, originating surface structures exposing few metal tin layers, which are responsible for formic acid selectivity

    Implementasi Konsep Timor Pada Perancangan Interior Restoran Timor Di Kota Kupang - Nusa Tenggara Timur

    Full text link
    Local culture as a concept of interior design design is often considered outdated for modern society. In fact, local culture in Indonesia has variety of values and arts. One of the least exposed is the Timor culture originating from Kupang, East Nusa Tenggara. The culture of Timor can be applied to the interior design of the restaurant as one of the business areas with a high number of enthusiasts. This design offers the concept for visitors to enjoy entertainment and socialize while enjoying the food and drinks provided. The restaurant provides food and beverage service that offers an ethnic and artistic atmosphere. With this design, people's point of view of local culture will get better

    SĂ­ndrome da hipertensĂŁo pulmonar: a ascite em frangos de corte.

    Get PDF
    bitstream/item/57929/1/CUsersPiazzonDocumentsCIT-27.pd

    Facilely synthesized nitrogen-doped reduced graphene oxide functionalized with copper ions as electrocatalyst for oxygen reduction

    Get PDF
    Nitrogen-doped reduced graphene oxide is successfully synthesized and functionalized with hydroxylated copper ions via one-pot microwave-assisted route. The presence of cationic Cu coordinated to the graphene layer is fully elucidated through a set of experimental characterizations and theoretical calculations. Thanks to the presence of these hydroxyl-coordinated Cu2+ active sites, the proposed material shows good electrocatalytic performance for the oxygen reduction reaction, as evidenced by an electron transfer number of almost 4 and by high onset and half-wave potentials of 0.91 V and 0.78 V vs. the reversible hydrogen electrode, respectively. In addition, the N-doped Cu-functionalized graphene displays a superior current retention with respect to a commercial Pt/C catalyst during the stability test, implying its potential implementation in high-performance fuel cells and metal-air batteries

    The thick disk rotation-metallicity correlation as a fossil of an "inverse chemical gradient" in the early Galaxy

    Full text link
    The thick disk rotation--metallicity correlation, \partial V_\phi/\partial[Fe/H] =40\div 50 km s^{-1}dex^{-1} represents an important signature of the formation processes of the galactic disk. We use nondissipative numerical simulations to follow the evolution of a Milky Way (MW)-like disk to verify if secular dynamical processes can account for this correlation in the old thick disk stellar population. We followed the evolution of an ancient disk population represented by 10 million particles whose chemical abundances were assigned by assuming a cosmologically plausible radial metallicity gradient with lower metallicity in the inner regions, as expected for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer regions and populate layers located at higher |z|. A rotation--metallicity correlation appears, which well resembles the behaviour observed in our Galaxy at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure a correlation of \partial V_\phi/\partial[Fe/H]\simeq 60 km s^{-1}dex^{-1} for particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body models can account for the V_\phi vs. [Fe/H] correlation observed in the thick disk of our Galaxy, suggesting that processes internal to the disk such as heating and radial migration play a role in the formation of this old stellar component. In this scenario, the positive rotation-metallicity correlation of the old thick disk population would represent the relic signature of an ancient "inverse" chemical (radial) gradient in the inner Galaxy, which resulted from accretion of primordial gas.Comment: Accepted for publication on Astronomy and Astrophysic
    • …
    corecore