174 research outputs found

    Entry length for the rocket meteorological radiation shield

    Get PDF
    Thermal entry length of temperature sensor placement in tubular radiation shiel

    Point defect interactions with extended defects in semiconductors

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOWe performed a theoretical investigation of the interaction of point defects (vacancy and self-interstitials) with an intrinsic stacking fault in silicon using ab initio total-energy calculations. Defects at the fault and in the crystalline environment display a different behavior, which is evidenced by changes in formation energy and electronic structure. The formation energies for the vacancy and the [110]-split interstitial are lower at the intrinsic stacking fault than those in the crystal, indicating that in nonequilibrium conditions, intrinsic stacking faults can act, together with other extended defects, as a sink for point defects, and also that in equilibrium conditions, there can be a higher concentration of such defects at the fault than that in bulk silicon. [S0163-1829(99)03631-0].We performed a theoretical investigation of the interaction of point defects (vacancy and self-interstitials) with an intrinsic stacking fault in silicon using ab initio total-energy calculations. Defects at the fault and in the crystalline environment display a different behavior, which is evidenced by changes in formation energy and electronic structure. The formation energies for the vacancy and the [110]-split interstitial are lower at the intrinsic stacking fault than those in the crystal, indicating that in nonequilibrium conditions, intrinsic stacking faults can act, together with other extended defects, as a sink for point defects, and also that in equilibrium conditions, there can be a higher concentration of such defects at the fault than that in bulk silicon.60747114714FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSem informaçãoSem informaçãoThe authors acknowledge partial support from the Brazilian funding agencies FAPESP and CNPq. Computer calculations were performed at the facilities of CENAPAD-SP

    Substrate suppression of oxidation process in pnictogen monolayers

    Full text link
    2D materials present an interesting platform for device designs. However, oxidation can drastically change the system's properties, which need to be accounted for. Through {\it ab initio} calculations, we investigated freestanding and SiC-supported As, Sb, and Bi mono-elemental layers. The oxidation process occurs through an O2_2 spin-state transition, accounted for within the Landau-Zener transition. Additionally, we have investigated the oxidation barriers and the role of spin-orbit coupling. Our calculations pointed out that the presence of SiC substrate reduces the oxidation time scale compared to a freestanding monolayer. We have extracted the energy barrier transition, compatible with our spin-transition analysis. Besides, spin-orbit coupling is relevant to the oxidation mechanisms and alters time scales. The energy barriers decrease as the pnictogen changes from As to Sb to Bi for the freestanding systems, while for SiC-supported, they increase across the pnictogen family. Our computed energy barriers confirm the enhanced robustness against oxidation for the SiC-supported systems

    A metaphylactic treatment with double dose oxytetracycline reduces the risk of bovine respiratory disease in feedlot calves

    Get PDF
    El objetivo del presente estudio fue evaluar el efecto del tratamiento metafiláctico con oxitetraciclina (OTC), a simple y doble dosis, en bovinos con alto riesgo de padecer enfermedad respiratoria bovina (ERB). El estudio se realizó en un establecimiento de engorde a corral donde se utilizaron 2.754 terneros que fueron considerados de alto riesgo de padecer ERB. Se utilizó un diseño en bloque completamente al azar donde se consideró al animal como la unidad experimental y el corral (n=10) como bloque. Se formaron tres grupos experimentales: 1- control (CTL) el cual permaneció sin tratamiento, 2- recibió OTC 20 mg/kg SC (OTC20) y 3- recibió OTC 40 mg/kg SC (OTC40). El riesgo de ERB fue evaluado a través de una regresión logística. Los animales del grupo CTL tuvieron 2,85 y 7,14 veces más chances de enfermarse de ERB que los animales de los grupos OTC20 y OTC40 respectivamente (

    Machine learning of microscopic ingredients for graphene oxide/cellulose interaction

    Full text link
    Understanding the role of microscopic attributes in nanocomposites allows for a controlled and, therefore, acceleration in experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations and machine learning algorithms. We were able to classify the systems among two classes with higher and lower binding energies, which are well defined based on the isolated graphene oxide features. By a theoretical X-ray photoelectron spectroscopy analysis, we show the extraction of these relevant features. Additionally, we demonstrate the possibilities of a refined control within a machine learning regression between the binding energy values and the system's characteristics. Our work presents a guiding map to the control graphene oxide/cellulose interaction

    Orientational Defects in Ice Ih: An Interpretation of Electrical Conductivity Measurements

    Full text link
    We present a first-principles study of the structure and energetics of Bjerrum defects in ice Ih and compare the results to experimental electrical conductivity data. While the DFT result for the activation energy is in good agreement with experiment, we find that its two components have quite different values. Aside from providing new insight into the fundamental parameters of the microscopic electrical theory of ice, our results suggest the activity of traps in doped ice in the temperature regime typically assumed to be controlled by the free migration of L defects.Comment: 4 pages, 4 Figures, 1 Tabl

    Emergence of magnetism in graphene materials and nanostructures

    Full text link
    Magnetic materials and nanostructures based on carbon offer unique opportunities for future technological applications such as spintronics. This article reviews graphene-derived systems in which magnetic correlations emerge as a result of reduced dimensions, disorder and other possible scenarios. In particular, zero-dimensional graphene nanofragments, one-dimensional graphene nanoribbons, and defect-induced magnetism in graphene and graphite are covered. Possible physical mechanisms of the emergence of magnetism in these systems are illustrated with the help of computational examples based on simple model Hamiltonians. In addition, this review covers spin transport properties, proposed designs of graphene-based spintronic devices, magnetic ordering at finite temperatures as well as the most recent experimental achievements.Comment: tutorial-style review article -- 18 pages, 19 figure

    Hdac6 regulates Tip60-p400 function in stem cells

    Get PDF
    In embryonic stem cells (ESCs), the Tip60 histone acetyltransferase activates genes required for proliferation and silences genes that promote differentiation. Here we show that the class II histone deacetylase Hdac6 co-purifies with Tip60-p400 complex from ESCs. Hdac6 is necessary for regulation of most Tip60-p400 target genes, particularly those repressed by the complex. Unlike differentiated cells, where Hdac6 is mainly cytoplasmic, Hdac6 is largely nuclear in ESCs, neural stem cells (NSCs), and some cancer cell lines, and interacts with Tip60-p400 in each. Hdac6 localizes to promoters bound by Tip60-p400 in ESCs, binding downstream of transcription start sites. Surprisingly, Hdac6 does not appear to deacetylate histones, but rather is required for Tip60-p400 binding to many of its target genes. Finally, we find that, like canonical subunits of Tip60-p400, Hdac6 is necessary for robust ESC differentiation. These data suggest that Hdac6 plays a major role in the modulation of Tip60-p400 function in stem cells. DOI: http://dx.doi.org/10.7554/eLife.01557.001
    corecore