311 research outputs found

    Pressure dependence of diffusion in simple glasses and supercooled liquids

    Get PDF
    Using molecular dynamics simulation, we have calculated the pressure dependence of the diffusion constant in a binary Lennard-Jones Glass. We observe four temperature regimes. The apparent activation volume drops from high values in the hot liquid to a plateau value. Near the critical temperature of the mode coupling theory it rises steeply, but in the glassy state we find again small values, similar to the ones in the liquid. The peak of the activation volume at the critical temperature is in agreement with the prediction of mode coupling theory

    Experimental evidence for fast cluster formation of chain oxygen vacancies in YBa2Cu3O7-d being at the origin of the fishtail anomaly

    Full text link
    We report on three different and complementary measurements, namely magnetisation measurements, positron annihilation spectroscopy and NMR measurements, which give evidence that the formation of oxygen vacancy clusters is on the origin of the fishtail anomaly in YBa2Cu3O7-d. While in the case of YBa2Cu3O7.0 the anomaly is intrinsically absent, it can be suppressed in the optimally doped state where vacancies are present. We therefore conclude that the single vacancies or point defects can not be responsible for this anomaly but that clusters of oxygen vacancies are on its origin.Comment: 10 pages, 4 figures, submitted to PR

    Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization

    Get PDF
    Nanomaterials for highly selective and sensitive sensors toward specific gas molecules of volatile organic compounds (VOCs) are most important in developing new-generation of detector devices, for example, for biomarkers of diseases as well as for continuous air quality monitoring. Here, we present an innovative preparation approach for engineering sensors, which allow for full control of the dopant concentrations and the nanoparticles functionalization of columnar material surfaces. The main outcome of this powerful design concept lies in fine-tuning the reactivity of the sensor surfaces toward the VOCs of interest. First, nanocolumnar and well-distributed Ag-doped zinc oxide (ZnO:Ag) thin films are synthesized from chemical solution, and, at a second stage, noble nanoparticles of the required size are deposited using a gas aggregation source, ensuring that no percolating paths are formed between them. Typical samples that were investigated are Ag-doped and Ag nanoparticle-functionalized ZnO:Ag nanocolumnar films. The highest responses to VOCs, in particular to (CH3)2CHOH, were obtained at a low operating temperature (250 °C) for the samples synergistically enhanced with dopants and nanoparticles simultaneously. In addition, the response times, particularly the recovery times, are greatly reduced for the fully modified nanocolumnar thin films for a wide range of operating temperatures. The adsorption of propanol, acetone, methane, and hydrogen at various surface sites of the Ag-doped Ag8/ZnO(0001) surface has been examined with the density functional theory (DFT) calculations to understand the preference for organic compounds and to confirm experimental results. The response of the synergistically enhanced sensors to gas molecules containing certain functional groups is in excellent agreement with density functional theory calculations performed in this work too. This new fabrication strategy can underpin the next generation of advanced materials for gas sensing applications and prevent VOC levels that are hazardous to human health and can cause environmental damages

    Real time investigations during sputter deposition for tailoring optical properties of metal-polymer interfaces

    Get PDF
    Poster presented at the 16th International Conference on Small-Angle Scattering, held on 13-18th September, 2015, Berlin (Germany).Tailoring optoelectronic properties of metal-polymer interfaces using self-assembly of nanoparticles is of crucial importance in organic electronics and organic photovoltaics [1]. In particular, metal sputter deposition on block-co-polymers is one widely used method to fabricate nanostructured metal layers on a large scale exploiting the selective wetting and doping of metals on polystyrene domains [2,3]. In order to obtain full control over the nanostructural evolution at the metal-polymer interface and its impact on optoelectronic properties, we employed a combination of in situ time-resolved microfocus Grazing Incidence Small Angle X-ray Scattering (ÎŒGISAXS) with in situ UV/Vis Specular Reflectance Spectroscopy (SRS) during sputter deposition of gold (Au) on thin polystyrene films (PS). We monitored the evolution of the metallic layer morphology according to changes in the key scattering features by geometrical modeling [4] and correlate the nanostructural development to optical properties. The changes of optoelectronic properties induced by metal nanoparticle growth during the sputter deposition process were exemplarily monitored using SRS. The morphological characterization is complemented by X-ray reflectivity and electron microscopy. This enables us to identify the different growth regimes including their specific thresholds and permits better understanding of the growth kinetics of gold clusters and their self-organization into complex nanostructures on polymer substrates. Thus, our findings are of great interest for applications in organic photovoltaics [5] and organic electronics, which benefit from tailored metal-polymer interfaces

    Microstructural and plasmonic modifications in Ag-TiO₂ and Au-TiO₂ nanocomposites through ion beam irradiation

    Get PDF
    The development of new fabrication techniques of plasmonic nanocomposites with specific properties is an ongoing issue in the plasmonic and nanophotonics community. In this paper we report detailed investigations on the modifications of the microstructural and plasmonic properties of metal–titania nanocomposite films induced by swift heavy ions. Au–TiO2 and Ag–TiO2 nanocomposite thin films with varying metal volume fractions were deposited by co-sputtering and were subsequently irradiated by 100 MeV Ag8+ ions at various ion fluences. The morphology of these nanocomposite thin films before and after ion beam irradiation has been investigated in detail by transmission electron microscopy studies, which showed interesting changes in the titania matrix. Additionally, interesting modifications in the plasmonic absorption behavior for both Au–TiO2 and Ag–TiO2 nanocomposites were observed, which have been discussed in terms of ion beam induced growth of nanoparticles and structural modifications in the titania matrix

    Atomic Transport in Dense, Multi-Component Metallic Liquids

    Full text link
    Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with incoherent, inelastic neutron scattering. As compared to simple liquids, liquid PdNiCuP is characterized by a dense packing with a packing fraction above 0.5. The intermediate scattering function exhibits a fast relaxation process that precedes structural relaxation. Structural relaxation obeys a time-temperature superposition that extends over a temperature range of 540K. The mode-coupling theory of the liquid to glass transition (MCT) gives a consistent description of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT scaling laws extrapolate to a critical temperature Tc at about 20% below the liquidus temperature. Diffusivities derived from the mean relaxation times compare well with Co diffusivities from recent tracer diffusion measurements and diffsuivities calculated from viscosity via the Stokes-Einstein relation. In contrast to simple metallic liquids, the atomic transport in dense, liquid PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a q^{-2} dependence of the mean relaxation times at intermediate q and a vanishing isotope effect as a result of a highly collective transport mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as fast as in simple liquids at the melting point. However, the difference in the underlying atomic transport mechanism indicates that the diffusion mechanism in liquids is not controlled by the value of the diffusivity but rather by that of the packing fraction

    Poly(methyl methacrylate) - Palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    Full text link
    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on Poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd cluster are implanted in the polymer and form a continuous layer extending for several tens of nanometers beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared to metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.Comment: 11 pages, 3 figure

    Corruption in Developing Countries

    Get PDF
    Recent years have seen a remarkable expansion in economists' ability to measure corruption. This in turn has led to a new generation of well-identified, microeconomic studies. We review the evidence on corruption in developing countries in light of these recent advances, focusing on three questions: how much corruption is there, what are the efficiency consequences of corruption, and what determines the level of corruption? We find robust evidence that corruption responds to standard economic incentive theory but also that the effects of anticorruption policies often attenuate as officials find alternate strategies to pursue rents.Hewlett-Packard CompanyGreat Britain. Dept. for International DevelopmentMassachusetts Institute of Technology. Abdul Latif Jameel Poverty Action Lab (Governance Initiative
    • 

    corecore