134 research outputs found

    Dual Band to Wideband Pentagon-shaped Patch Antenna with Frequency Reconfigurability using EBGs

    Get PDF
    A dual band to wideband reconfigurable pentagon-shaped antenna with EBG unit cell is proposed. A minimal number of two EBG unit cell is deployed to realize frequency reconfigurable mechanism.  By varying the state of the EBG the antenna is capable to change its dual band operation to wideband alternately. There are three cases that have been analysed, first case is the EBG incorporated antenna with ideal and second is with the active EBG. Subsequently, the third cases is the fabricated ideal EBG incorporated antenna. The dual band operation is at 1.8 GHz and 5.2 GHz while the wide band from 1.6 GHz to 2.37 GHz (770 MHz). The proposed reconfigurable antenna is suitable to be implemented for LTE (1.6 GHz), Wi-Fi (5.2 GHz), WiMAX (2.3 GHz) and cognitive radio application

    Reconfigurable Metamaterial Structure at Millimeter Wave Frequency Range

    Get PDF
    In this paper, reconfigurable metamaterial structure at millimeter wave frequency range was designed and simulated for a future fifth generation (5G) mobile-phone beam switching applications. The new proposed structure was composed of a bridge-shaped resonator (BSR) in the front face and strip line at the back face of the unit cell which operates at 28 GHz. First, non-reconfigurable low loss BSR unit cell was designed and subsequently, the reconfigurability was achieved using four switches formed in the gaps of the structure. The proposed structure achieves the lowest loss and almost full transmission among its counterparts by -0.06 dB (0.99 in linear scale). To demonstrate the reconfigurability of the metamaterial, the reflection and transmission coefficients and real parts of the effective refractive index at each reconfigured frequency were studied and investigated. Simulation results showed that a high transmission and reflection peaks occur at each resonance frequency according to change the state of the switches

    Wideband millimeter-wave substrate integrated waveguide cavity-backed antenna for satellites communications

    Get PDF
    This paper presents a new type of wideband waveguide (SIW) cavity-backed patch antenna for millimeter wave (mmW). The antenna proposed applies to applications of 31-36 GHz Ka-band such as satellites communications. The SIW is intended with settings for particular slots. The antenna is constructed on Rogers RT5880 (lossy) with 2.2 dielectric constant, l.27 mm thickness, and 0.0009 loss tangent. It is simulated in the programming of computer simulation technology (CST) Microwave Studio. The simulated results show that the SIW antenna resonates across 31 to 36 GHz bands, which means that this new antenna covers all applications within this range. The reflection coefficients in targeting range are below 10 dB. The antenna achieves good efficiency and gain with 80% and 8.87 dBi respectively

    Negative refraction metamaterial with low loss property at millimeter wave spectrum

    Get PDF
    The design of the millimetre-wave (MMW) metamaterials (MMs) unit cell operates at 28 GHz is presented and numerically investigated. The proposed structure composed of a modified split ring resonator (MSRR) printed on both sides of the substrate layer. Popular MM structures such as S-shape, G-shape, and Ω-shape are adjusted to operate at the 28 GHz for comparison purpose. MSRR achieves a wide bandwidth of 1.1 GHz in comparison with its counterparts at the resonance frequency. Moreover, the proposed structure presents very low losses by providing the highest transmission coefficient, S21, at the corresponding frequency region. The radiation loss is substantially suppressed and the negativity of the constitutive parameters of the proposed MM structure is maintained. By applying the principle of the electromagnetically induced transparency (EIT) phenomenon, the MSRR unit cell induces opposite currents on both sides of the substrate which leads to cancelling out the scattering fields and suppresses the radiation loss. The constitutive parameters of the MM structures are retrieved using well-known retrieval algorithm. The proposed structure can be used to enhance the performance of fifth-generation (5G) antenna such as the gain and bandwidth

    Dual band low loss metamaterial structure at millimetre wave band

    Get PDF
    In this paper, the Dual band modified split square resonator (MSSR) metamaterial (MM) structure was designed and numerically investigated at millimetre wave (mm-Wave) frequency range. The proposed structure operated at two resonance frequencies 28 GHz and 32.54 GHz. The dual-band behaviour of the proposed structure because of the self and mutual coupling between two metallic squares of the structure. Furthermore, The MSRR structure performed very well at both resonance frequencies by providing high transmission coefficient, S21, with a loss of -0.3 dB (0.97 linear scale) at lower resonance frequency 28 GHz and -0.18 dB (0.98 linear scale) at upper resonance frequency 32.54 GHz. In this regard, the numerical simulation was conducted to optimize the MSSR structure in such a way that the ratio of effective inductance-to-capacitance (L/C) was raised. As a result, the inherent MM losses were reduced. The robust retrieval algorithm was utilized to reconstruct the refractive index, effective permittivity, and effective permeability and to verify the left-hand property of the proposed structure. The simulation results showed that the MSSR unit cell introduces two regions of the negative refractive index below the lower resonance frequency, 28 GHz and above the upper resonance frequency, 32.54 GHz

    Global Research Priorities to Better Understand the Burden of Iatrogenic Harm in Primary Care: An International Delphi Exercise

    Get PDF
    There is a need to identify and reach agreement on key foci for patient safety research in primary care contexts and understand how these priorities differ between low-, middle-, and high-income settings. We conducted a modified Delphi exercise, which was distributed to an international panel of experts in patient safety and primary care. Family practice and pharmacy were considered the main contexts on which to focus attention in order to advance patient safety in primary care across all income categories. Other clinical contexts prioritised included community midwifery and nursing in low-income countries and care homes in high-income countries. The sources of patient safety incidents requiring further study across all economic settings that were identified were communication between health care professionals and with patients, teamwork within the health care team, laboratory and diagnostic imaging investigations, issues relating to data management, transitions between different care settings, and chart/patient record com- pleteness. This work lays the foundation for a range of research initiatives that aim to promote a more comprehensive appreciation of the burden of unsafe primary care, develop understanding of the main areas of risk, and identify interventions that can enhance the safety of primary care provision internationall

    Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa

    Get PDF
    Few studies from Africa have described the clinical impact of co-infections on SARS-CoV-2 infection. Here, we investigate the presentation and outcome of SARS-CoV-2 infection in an African setting of high HIV-1 and tuberculosis prevalence by an observational case cohort of SARS-CoV-2 patients. A comparator group of non SARS-CoV-2 participants is included. The study includes 104 adults with SARS-CoV-2 infection of whom 29.8% are HIV-1 co-infected. Two or more co-morbidities are present in 57.7% of participants, including HIV-1 (30%) and active tuberculosis (14%). Amongst patients dually infected by tuberculosis and SARS-CoV-2, clinical features can be typical of either SARS-CoV-2 or tuberculosis: lymphopenia is exacerbated, and some markers of inflammation (D-dimer and ferritin) are further elevated (p < 0.05). Amongst HIV-1 co-infected participants those with low CD4 percentage strata exhibit reduced total, but not neutralising, anti-SARS-CoV-2 antibodies. SARS-CoV-2 specific CD8 T cell responses are present in 35.8% participants overall but undetectable in combined HIV-1 and tuberculosis. Death occurred in 30/104 (29%) of all COVID-19 patients and in 6/15 (40%) of patients with coincident SARS-CoV-2 and tuberculosis. This shows that in a high incidence setting, tuberculosis is a common co-morbidity in patients admitted to hospital with COVID-19. The immune response to SARS-CoV-2 is adversely affected by co-existent HIV-1 and tuberculosis

    Measurement of global polarization of {\Lambda} hyperons in few-GeV heavy-ion collisions

    Full text link
    The global polarization of {\Lambda} hyperons along the total orbital angular momentum of a relativistic heavy-ion collision is presented based on the high statistics data samples collected in Au+Au collisions at \sqrt{s_{NN}} = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the hyperon transverse momentum (p_T) and rapidity (y_{CM}) for the range of centrality 0--40%. We observe a strong centrality dependence of the polarization with an increasing signal towards peripheral collisions. For mid-central (20--40%) collisions the polarization magnitudes are (%) = 6.0 \pm 1.3 (stat.) \pm 2.0 (syst.) for Au+Au and (%) = 4.6 \pm 0.4 (stat.) \pm 0.5 (syst.) for Ag+Ag, which are the largest values observed so far. This observation thus provides a continuation of the increasing trend previously observed by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted by 3D fluid dynamics and the UrQMD plus thermal vorticity model and significantly above results from the AMPT model.Comment: 8 pages, 4 figure
    corecore