15 research outputs found
The Interaction of Canine Plasminogen with Streptococcus pyogenes Enolase: They Bind to One Another but What Is the Nature of the Structures Involved?
For years it has been clear that plasminogen from different sources and enolase from different sources interact strongly. What is less clear is the nature of the structures required for them to interact. This work examines the interaction between canine plasminogen (dPgn) and Streptococcus pyogenes enolase (Str enolase) using analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), fluorescence polarization, dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and simple pull-down reactions. Overall, our data indicate that a non-native structure of the octameric Str enolase (monomers or multimers) is an important determinant of its surface-mediated interaction with host plasminogen. Interestingly, a non-native structure of plasminogen is capable of interacting with native enolase. As far as we can tell, the native structures resist forming stable mixed complexes
Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus
Activating transcription factor 5 (ATF5) is a basic-leucine-zipper transcription factor of the ATF/CREB family. The Atf5 gene generates two transcripts, Atf5α and Atf5ÎČ, of which Atf5α is known to be selectively translated upon endoplasmic reticulum stress response in non-neuronal cells. ATF5 is highly expressed in the developing brain where it modulates proliferation of neural progenitor cells. These cells show a high level of ATF5 that has to decrease to allow them to differentiate into mature neurons or glial cells. This has led to the extended notion that differentiated neural cells do not express ATF5 unless they undergo tumourigenic transformation. However, no systematic analysis of the distribution of ATF5 in adult brain or of its potential role in neuronal endoplasmic reticulum stress response has been reported. By immunostaining here we confirm highest ATF5 levels in neuroprogenitor cells of the embryonic and adult subventricular zone but also found ATF5 in a large variety of neurons in adult mouse brain. By combining Atf5 in situ hybridization and immunohistochemistry for the neuronal marker NeuN we further confirmed Atf5 messenger RNA in adult mouse neurons. Quantitative reverse transcriptase polymerase chain reaction demonstrated that Atf5α is the most abundant transcript in adult mouse encephalon and injection of the endoplasmic reticulum stress inducer tunicamycin into adult mouse brain increased neuronal ATF5 levels. Accordingly, ATF5 levels increased in hippocampal neurons of a mouse model of status epilepticus triggered by intra-amygdala injection of kainic acid, which leads to abnormal hippocampal neuronal activity and endoplasmic reticulum stress. Interestingly, ATF5 upregulation occurred mainly in hippocampal neuronal fields that do not undergo apoptosis in this status epilepticus model such as CA1 and dentate gyrus, thus suggesting a neuroprotective role. This was confirmed in a primary neuronal culture model in which ATF5 overexpression resulted in decreased endoplasmic reticulum stress-induced apoptosis and the opposite result was achieved by Atf5 RNA interference. Furthermore, in vivo administration of the eIF2α phosphatase inhibitor salubrinal resulted in increased ATF5 hippocampal levels and attenuated status epilepticus-induced neuronal death in the vulnerable CA3 subfield. In good agreement with the neuroprotective effect of increased ATF5, we found that apoptosis-resistant epileptogenic foci from patients with temporal lobe epilepsy also showed increased levels of ATF5. Thus, our results demonstrate that adult neurons express ATF5 and that they increase its levels upon endoplasmic reticulum stress as a pro-survival mechanism, thus opening a new field for neuroprotective strategies focused on ATF5 modulation. © 2013 The Author (2013).Peer Reviewe
Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity.
The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes