5,444 research outputs found

    Extramural Venous Invasion as Prognostic Factor of Recurrence in Stage 1 and 2 Colon Cancer

    Get PDF
    Aim. Extramural venous invasion (EMVI) is a prognostic indicator in patients with colorectal cancer. However, its additional value in patients with stage 1 and 2 colorectal cancer is uncertain. In the present study, the incidence of EMVI and the hazard ratio for recurrence in patients with stage 1 and 2 colon cancer were studied. Methods. 184 patients treated for stage 1 and 2 colon cancer were included with a follow-up of at least 5 years. Chart review was performed and EMVI was assessed by two separate pathologists. EMVI was scored with additional caldesmon staining on the resection specimen. Primary outcomes were recurrence-free survival (RFS) measured through the Cox regression analysis and prevalence of EMVI. Results. There were 10 cases of EMVI and 3 cases of intramural venous invasion (IMVI) all occurring in patients with stage 2 disease corresponding to a prevalence of 9%. Thirty-one percent of the patients with venous invasion experienced recurrence versus 14% in patients without, corresponding with a hazard ratio of 2.39 (p=0.11). Conclusion. The present study demonstrates a trend towards an increased risk of recurrence in patients with stage 2 colon cancer with venous invasion. This warrants consideration of adjuvant chemotherapy despite the lack of lymph node metastases

    Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks

    Full text link
    Present in over 45% of local spirals, boxy and peanut-shaped bulges are generally interpreted as edge-on bars and may represent a key phase in the evolution of bulges. Aiming to test such claims, the kinematic properties of self-consistent 3D N-body simulations of bar-unstable disks are studied. Using Gauss-Hermite polynomials to describe the stellar kinematics, a number of characteristic bar signatures are identified in edge-on disks: 1) a major-axis light profile with a quasi-exponential central peak and a plateau at moderate radii (Freeman Type II profile); 2) a ``double-hump'' rotation curve; 3) a sometime flat central velocity dispersion peak with a plateau at moderate radii and occasional local central minimum and secondary peak; 4) an h3-V correlation over the projected bar length. All those kinematic features are spatially correlated and can easily be understood from the orbital structure of barred disks. They thus provide a reliable and easy-to-use tool to identify edge-on bars. Interestingly, they are all produced without dissipation and are increasingly realized to be common in spirals, lending support to bar-driven evolution scenarios for bulge formation. So called ``figure-of-eight'' position-velocity diagrams are never observed, as expected for realistic orbital configurations. Although not uniquely related to triaxiality, line-of-sight velocity distributions with a high velocity tail (i.e. an h3-V correlation) appear as particularly promising tracers of bars. The stellar kinematic features identified grow in strength as the bar evolves and vary little for small inclination variations. Many can be used to trace the bar length. Comparisons with observations are encouraging and support the view that boxy and peanut-shaped bulges are simply thick bars viewed edge-on.Comment: 32 pages, 4 figures, AASTeX preprint. Revised following referees' comments. Now accepted for publication in The Astrophysical Journal. We strongly suggest you download the version with full resolution figures at http://www.astro.columbia.edu/~bureau/Publications/Nbody_ApJ04.ps.g

    Symbiotic Ocean Modeling Using Physics-Controlled Echo State Networks

    Get PDF
    We introduce a “symbiotic” ocean modeling strategy that leverages data-driven and machine learning methods to allow high- and low-resolution dynamical models to mutually benefit from each other. In this work we mainly focus on how a low-resolution model can be enhanced within a symbiotic model configuration. The broader aim is to enhance the representation of unresolved processes in low-resolution models, while simultaneously improving the efficiency of high-resolution models. To achieve this, we use a grid-switching approach together with hybrid modeling techniques that combine linear regression-based methods with nonlinear echo state networks. The approach is applied to both the Kuramoto–Sivashinsky equation and a single-layer quasi-geostrophic ocean model, and shown to simulate short-term and long-term behavior better than either purely data-based methods or low-resolution models. By maintaining key flow characteristics, the hybrid modeling techniques are also able to provide higher quality initial conditions for high-resolution models, thereby improving their efficiency.</p

    Symbiotic Ocean Modeling Using Physics-Controlled Echo State Networks

    Get PDF
    We introduce a “symbiotic” ocean modeling strategy that leverages data-driven and machine learning methods to allow high- and low-resolution dynamical models to mutually benefit from each other. In this work we mainly focus on how a low-resolution model can be enhanced within a symbiotic model configuration. The broader aim is to enhance the representation of unresolved processes in low-resolution models, while simultaneously improving the efficiency of high-resolution models. To achieve this, we use a grid-switching approach together with hybrid modeling techniques that combine linear regression-based methods with nonlinear echo state networks. The approach is applied to both the Kuramoto–Sivashinsky equation and a single-layer quasi-geostrophic ocean model, and shown to simulate short-term and long-term behavior better than either purely data-based methods or low-resolution models. By maintaining key flow characteristics, the hybrid modeling techniques are also able to provide higher quality initial conditions for high-resolution models, thereby improving their efficiency.</p

    Bar Diagnostics in Edge-On Spiral Galaxies. II. Hydrodynamical Simulations

    Full text link
    We develop diagnostics based on gas kinematics to identify the presence of a bar in an edge-on spiral galaxy and determine its orientation. We use position-velocity diagrams (PVDs) obtained by projecting edge-on two-dimensional hydrodynamical simulations of the gas flow in a barred galaxy potential. We show that when a nuclear spiral is formed, the presence of a gap in the PVDs, between the signature of the nuclear spiral and that of the outer parts of the disk, reliably indicates the presence of a bar. This gap is due to the presence of shocks and inflows in the simulations, leading to a depletion of the gas in the outer bar region. If no nuclear spiral signature is present in a PVD, only indirect arguments can be used to argue for the presence of a bar. The shape of the signature of the nuclear spiral, and to a lesser extent that of the outer bar region, allows to determine the orientation of the bar with respect to the line-of-sight. The presence of dust can also help to discriminate between viewing angles on either side of the bar. Simulations covering a large fraction of parameter space constrain the bar properties and mass distribution of observed galaxies. The strongest constraint comes from the presence or absence of the signature of a nuclear spiral in the PVD.Comment: 25 pages (AASTeX, aaspp4.sty), 11 jpg figures. Accepted for publication in The Astrophysical Journal. Online manuscript with PostScript figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    Proton irradiation induced GaAs solar cell performance degradation simulations using a physics-based model

    Get PDF
    In this study a recently developed physics-based model to describe the performance degradation of GaAs solar cells upon electron irradiation is applied to analyze the effects of proton irradiation. For this purpose GaAs solar cells with significantly different architectures are subjected to a range of proton irradiation fluences up to 5×1012 H+/cm2. The resulting J−V and EQE characteristics of the cells are measured and compared with the simulations from the model. The model requires individual degradation constants for the SRH lifetimes and the surface recombination velocities as an input. In this study these constants were obtained from the recently determined associated constants for electron irradiation using the particles non-ionizing energy loss (NIEL) values for conversion. The good fit between the simulated and experimentally obtained results demonstrate that this is a valid approach. Moreover, it suggests that the physics based model allows for a good prediction of GaAs cell performance under particle irradiation of any kind independent of the particular cell architecture as long as the layer thicknesses and doping levels are known. In addition the applied proton irradiation levels in this study were not found to induce additional Cu-related degradation in the investigated thin-film cells, indicating that the use of copper foil as a convenient carrier and rear contact does not require reconsideration for thin-film cells intended for space applications

    Bar Diagnostics in Edge-On Spiral Galaxies. I. The Periodic Orbits Approach

    Full text link
    We develop diagnostics to detect the presence and orientation of a bar in an edge-on disk, using its kinematical signature in the position-velocity diagram (PVD) of a spiral galaxy observed edge-on. Using a well-studied barred spiral galaxy mass model, we briefly review the orbital properties of two-dimensional non-axisymmetric disks and identify the main families of periodic orbits. We use those families as building blocks to model real galaxies and calculate the PVDs obtained for various realistic combinations of periodic orbit families and for a number of viewing angles with respect to the bar. We show that the global structure of the PVD is a reliable bar diagnostic in edge-on disks. Specifically, the presence of a gap between the signatures of the families of periodic orbits in the PVD follows directly from the non-homogeneous distribution of the orbits in a barred galaxy. Similarly, material in the two so-called forbidden quadrants of the PVD results from the elongated shape of the orbits. We show how the shape of the signatures of the dominant x1 and x2 families of periodic orbits in the PVD can be used efficiently to determine the viewing angle with respect to the bar and, to a lesser extent, to constrain the mass distribution of an observed galaxy. We also address the limitations of the models when interpreting observational data.Comment: 22 pages, 9 figures (AASTeX, aaspp4.sty). Accepted for publication in The Astrophysical Journa

    Ultraviolet Signposts of Resonant Dynamics in the Starburst-Ringed Sab Galaxy, M94 (NGC 4736)

    Get PDF
    M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along with spectra from the International Ultraviolet Explorer and Lick 1-m telescopes. The wide-field UIT image shows FUV emission from (a) an elongated nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c) a bright inner ring of H II regions at the perimeter of the inner disk (R = 48 arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc). The HST/FOC image resolves the NUV emission from the nuclear region into a bright core and a faint 20 arcsec. long ``mini-bar'' at a position angle of 30 deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates an approximately 10^7 or 10^8 yr-old stellar population from low-level starbirth activity blended with some LINER activity. Analysis of the H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers of stars and gas in M94 indicates that most of the star formation is being orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring, oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of approximately 1.5 provides an important precedent in this regard.Comment: revised figure 1 (corrected coordinate labels on declination axis); 19 pages of text + 19 figures (jpg files); accepted for publication in A

    Effects of fluticasone propionate on arachidonic acid metabolites in BAL-fluid and methacholine dose-response curves in non-smoking atopic asthmatics

    Get PDF
    Hyperresponsiveness of the airways to nonspecific stimuli is a characteristic feature of asthma. Airway responsiveness is usually characterized in terms of the position and shape of the dose–response curve to methacholine (MDR). In the study we have investigated the influence of fluticasone propionate (FP), a topically active glucocorticoid, on arachidonic acid (AA) metabolites in broncho-alveolar lavage (BAL) fluid (i.e. TxB2, PGE2, PGD2, 6kPGF1α and LTC4) on the one hand and MDR curves on the other hand. The effect of FP was studied in a randomized, double-blind, placebo-controlled design in 33 stable nonsmoking asthmatics; 16 patients received FP (500 ÎŒg b.i.d.) whereas 17 patients were treated with placebo. We found that the forced expiratory volume in 1s (FEV1 % predicted) increased, the log2PC20 methacholine increased and the plateau value (% fall in FEV1) decreased after a 12 week treatment period. No changes in AA-metabolites could be determined after treatment except for PGD2 which decreased nearly significantly (p = 0.058) within the FP treated group, whereas the change of PGD2 differed significantly (p = 0.05) in the FP treated group from placebo. The levels of the other AA metabolites (i.e. TxB2, PGE2, 6kPGF1α and LTC4) remained unchanged after treatment and were not significantly different from the placebo group. Our results support the hypothesis that although FP strongly influences the position, the shape and also the maximum response plateau of the MDR curve, this effect is not mainly achieved by influence on the level of AA metabolites. Other pro-inflammatory factors may be of more importance for the shape of the MDR curve. It is suggested that these pro-inflammatory factors are downregulated by FP

    Magnetic-film atom chip with 10 Ό\mum period lattices of microtraps for quantum information science with Rydberg atoms

    Get PDF
    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 Ό\mum, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold 87^{87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure
    • 

    corecore