1,532 research outputs found

    Long-term X-ray changes in the emission from the anomalous X-ray pulsar 4U 0142+61

    Full text link
    We present results obtained from X-ray observations of the anomalous X-ray pulsar (AXP) 4U 0142+61 taken between 2000-2007 using XMM-Newton, Chandra and Swift. In observations taken before 2006, the pulse profile is observed to become more sinusoidal and the pulsed fraction increased with time. These results confirm those derived using the Rossi X-ray Timing Explorer and expand the observed evolution to energies below 2 keV. The XMM-Newton total flux in the 0.5-10 keV band is observed to be nearly constant in observations taken before 2006, while an increase of ~10% is seen afterwards and coincides with the burst activity detected from the source in 2006-2007. After these bursts, the evolution towards more sinusoidal pulse profiles ceased while the pulsed fraction showed a further increase. No evidence for large-scale, long-term changes in the emission as a result of the bursts is seen. The data also suggest a correlation between the flux and hardness of the spectrum, with brighter observations on average having a harder spectrum. As pointed out by other authors, we find that the standard blackbody plus power-law model does not provide the best spectral fit to the emission from 4U 0142+61. We also report on observations taken with the Gemini telescope after two bursts. These observations show source magnitudes consistent with previous measurements. Our results demonstrate the wide range of X-ray variability characteristics seen in AXPs and we discuss them in light of current emission models for these sources.Comment: 10 pages, 9 figures, in emulateapj style. Submitted to Ap

    The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    Get PDF
    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in the optical and NIR with Gemini North and in the radio with the WSRT. In this paper we present the source-energy distribution. The spectral results obtained in the individual wave bands do not connect smoothly; apparently components of different origin contribute to the total spectrum. Remarkable is that the INTEGRAL hard X-ray spectrum (power-law index 0.79 +/- 0.10) is now measured up to an energy of ~230 keV with no indication of a spectral break. Extrapolation of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude underneath the NIR and optical fluxes, as well as the low ~30 microJy (2 sigma) upper limit in the radio band.Comment: 6 pages, 1 figure. To be published in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006, London, UK), eds. S. Zane, R. Turolla and D. Pag

    Development of a graphite radiant heater

    Get PDF
    Design and tests of graphite radiant heater for high heat flux source in spacecraft thermostructural test

    Echo-Mapping of Swift J1753.5-0127

    Get PDF
    We present two epochs of coordinated X-ray-optical timing observations of the black hole candidate Swift J1753.5-0127 during its 2005 outburst. The first epoch in July occurred at outburst peak. Two consecutive nights of observations using the McDonald Observatory Argos camera with the Rossi X-ray Timing Explorer show a consistent correlation with an immediate response and an extended tail lasting ~5s. The properties of the variability and the correlation are consistent with thermal reprocessing in an accretion disk. The shortness of the lag suggests a short orbital period consistent with that recently claimed. The second epoch in August used the VLT FORS2 HIT mode again in conjunction with RXTE. Again a repeatable correlation is seen between two independent subsets of the data. In this case, though, the cross-correlation function has an unusual structure comprising a dip followed by a double-peak. We suggest that this may be equivalent to the dip plus single peak structure seen by Kanbach et al. (2001) in XTE J1118+480 and attributed there to synchrotron emission; a similar structure was seen during later activity of Swift J1753.5-0127 by Durant et al. (2008).Comment: 7 pages, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Effects of Eutrophication and Runoff on Arsenic Cycling in an Urban Lake

    Get PDF
    Urban lakes are important recreational and natural resources that add to the quality of life for city residents. Unfortunately, urban watersheds often contribute contaminants to these lakes, including organic chemicals, metals, nutrients, and pathogens. Nitrogen and phosphorus are very high in urban and suburban runoff, mostly as a result of animal waste and fertilizers, although leaky sewage systems may also contribute. These nutrients promote plant and algal growth in urban lakes, ultimately resulting in hyper-eutrophic conditions. Eutrophication, in turn, may affect the cycling and mobility of contaminants, such as arsenic and other toxic metals. Spy Pond, located in Arlington, Massachusetts, was recently discovered to be heavily contaminated with arsenic of unknown origin. Surface sediment concentrations above 2,500 ppm have been measured. Subsequent investigations have also revealed that total arsenic levels in the overlying hypolimnetic waters reach over 150 ppb. However, the two interconnected basins that constitute Spy Pond have been found to differ by an order of magnitude in the concentrations of arsenic found in hypolimnetic waters. The goal of this study is to determine the mechanisms responsible for the differences in arsenic mobility in the two basins of Spy Pond, and how this may impact the potential for minimizing human and ecological arsenic exposure. Based on differences in the concentrations of chemical constituents (e.g. iron, sulfur, conductivity, etc.) measured in each basin, we hypothesize that the greater arsenic concentrations found in the bottom waters of the South Basin of Spy Pond are caused by the combined effects of eutrophication, differences in the Fe/S ratio of the two basins, and the physical and chemical impacts of salts in highway runoff

    Genetics, sleep and memory:a recall-by-genotype study of ZNF804A variants and sleep neurophysiology

    Get PDF
    © 2015 Hellmich et al.Background: Schizophrenia is a complex, polygenic disorder for which over 100 genetic variants have been identified that correlate with diagnosis. However, the biological mechanisms underpinning the different symptom clusters remain undefined. The rs1344706 single nucleotide polymorphism within ZNF804A was among the first genetic variants found to be associated with schizophrenia. Previously, neuroimaging and cognitive studies have revealed several associations between rs1344706 and brain structure and function. The aim of this study is to use a recall-by-genotype (RBG) design to investigate the biological basis for the association of ZNF804A variants with schizophrenia. A RBG study, implemented in a population cohort, will be used to evaluate the impact of genetic variation at rs1344706 on sleep neurophysiology and procedural memory consolidation in healthy participants. Methods/Design: Participants will be recruited from the Avon Longitudinal Study of Parents and Children (ALSPAC) on the basis of genotype at rs1344706 (n = 24). Each participant will be asked to take part in two nights of in-depth sleep monitoring (polysomnography) allowing collection of neurophysiological sleep data in a manner not amenable to large-scale study. Sleep questionnaires will be used to assess general sleep quality and subjective sleep experience after each in-house recording. A motor sequencing task (MST) will be performed before and after the second night of polysomnography. In order to gather additional data about habitual sleep behaviour participants will be asked to wear a wrist worn activity monitor (actiwatch) and complete a sleep diary for two weeks. Discussion: This study will explore the biological function of ZNF804A genotype (rs1344706) in healthy volunteers by examining detailed features of sleep architecture and physiology in relation to motor learning. Using a RBG approach will enable us to collect precise and detailed phenotypic data whilst achieving an informative biological gradient. It would not be feasible to collect such data in the large sample sizes that would be required under a random sampling scheme. By dissecting the role of individual variants associated with schizophrenia in this way, we can begin to unravel the complex genetic mechanisms of psychiatric disorders and pave the way for future development of novel therapeutic approaches

    A Strong, Broad Absorption Feature in the X-ray Spectrum of the Nearby Neutron Star RX J1605.3+3249

    Full text link
    We present X-ray spectra taken with XMM-Newton of RX J1605.3+3249, the third brightest in the class of nearby, thermally emitting neutron stars. In contrast to what is the case for the brightest object, RX J1856.5-3754, we find that the spectrum of RX J1605.3+3249 cannot be described well by a pure black body, but shows a broad absorption feature at 27\AA (0.45 keV). With this, it joins the handful of isolated neutron stars for which spectral features arising from the surface have been detected. We discuss possible mechanisms that might lead to the features, as well as the overall optical to X-ray spectral energy distribution, and compare the spectrum with what is observed for the other nearby, thermally emitting neutron stars. We conclude that we may be observing absorption due to the proton cyclotron line, as was suggested for the other sources, but weakened due to the strong-field quantum electrodynamics effect of vacuum resonance mode conversion.Comment: 30 pages, 7 figures, accepted for publication in Ap

    The variable radio-to-X-ray spectrum of the magnetar XTE J1810-197

    Full text link
    We have observed the 5.54s anomalous X-ray pulsar XTE J1810-197 at radio, millimeter, and infrared (IR) wavelengths, with the aim of learning about its broad-band spectrum. At the IRAM 30m telescope, we have detected the magnetar at 88 and 144GHz, the highest radio-frequency emission ever seen from a pulsar. At 88GHz we detected numerous individual pulses, with typical widths ~2ms and peak flux densities up to 45Jy. Together with nearly contemporaneous observations with the Parkes, Nancay, and Green Bank telescopes, we find that in late 2006 July the spectral index of the pulsar was -0.5<alpha<0 over the range 1.4-144GHz. Nine dual-frequency Very Large Array and Australia Telescope Compact Array observations in 2006 May-September are consistent with this finding, while showing variability of alpha with time. We infer from the IRAM observations that XTE J1810-197 remains highly linearly polarized at millimeter wavelengths. Also, toward this pulsar, the transition frequency between strong and weak scattering in the interstellar medium may be near 50GHz. At Gemini, we detected the pulsar at 2.2um in 2006 September, at the faintest level yet observed, K_s=21.89+-0.15. We have also analyzed four archival IR Very Large Telescope observations (two unpublished), finding that the brightness fluctuated within a factor of 2-3 over a span of 3 years, unlike the monotonic decay of the X-ray flux. Thus, there is no correlation between IR and X-ray flux, and it remains uncertain whether there is any correlation between IR and radio flux.Comment: Accepted for publication in ApJ; contains improved discussion of infrared uncertaintie
    • …
    corecore