32 research outputs found

    Bent surface free energy differences from simulation

    Full text link
    We present a calculation of the change of free energy of a solid surface upon bending of the solid. It is based on extracting the surface stress through a molecular dynamics simulation of a bent slab by using a generalized stress theorem formula, and subsequent integration of the stress with respect to strain as a function of bending curvature. The method is exemplified by obtaining and comparing free energy changes with curvature of various reconstructed Au(001) surfaces.Comment: 14 pages, 2 figures, accepted for publication in Surface Science (ECOSS-19

    Magic structures of helical multi-shell zirconium nanowires

    Full text link
    The structures of free-standing zirconium nanowires with 0.6-2.8 nm in diameter are systematically studied by using genetic algorithm simulations with a tight-binding many body potential. Several multi-shell growth sequences with cylindrical structures are obtained. These multi-shell structures are composed of coaxial atomic shells with the three- and four-strands helical, centered pentagonal and hexagonal, and parallel double-chain-core curved surface epitaxy. Under the same growth sequence, the numbers of atomic strands in inner- and outer-shell show even-odd coupling and usually differ by five. The size and structure dependence of angular correlation functions and vibrational properties of zirconium nanowire are also discussed.Comment: 14 pages, 4 figure

    Electronic Properties of Ultra-Thin Aluminum Nanowires

    Full text link
    We have carried out first principles electronic structure and total energy calculations for a series of ultrathin aluminum nanowires, based on structures obtained by relaxing the model wires of Gulseren et al. The number of conducting channels is followed as the wires radius is increased. The results suggest that pentagonal wires should be detectable, as the only ones who can yield a channel number between 8 and 10.Comment: 9 pages + 3 figures, to appear on Surface Scienc

    The Puzzling Stability of Monatomic Gold Wires

    Full text link
    We have examined theoretically the spontaneous thinning process of tip-suspended nanowires, and subsequently studied the structure and stability of the monatomic gold wires recently observed by Transmission Electron Microscopy (TEM). The methods used include thermodynamics, classical many-body force simulations, Local Density (LDA) and Generalized Gradient (GGA) electronic structure calculations as well as ab-initio simulations including the two tips. The wire thinning is well explained in terms of a thermodynamic tip suction driving migration of surface atoms from the wire to the tips. For the same reason the monatomic wire becomes progressively stretched. Surprisingly, however, all calculations so far indicate that the stretched monatomic gold wire should be unstable against breaking, contrary to the apparent experimental stability. The possible reasons for the observed stability are discussed.Comment: 4 figure

    Roughening of close-packed singular surfaces

    Get PDF
    An upper bound to the roughening temperature of a close-packed singular surface, fcc Al (111), is obtained via free energy calculations based on thermodynamic integration using the embedded-atom interaction model. Roughening of Al (111) is predicted to occur at around 890 K, well below bulk melting (933 K), and it should therefore be observable, save for possible kinetic hindering.Comment: RevTeX 4 pages, embedded figure

    Melting behavior of ultrathin titanium nanowires

    Get PDF
    The thermal stability and melting behavior of ultrathin titanium nanowires with multi-shell cylindrical structures are studied using molecular dynamic simulation. The melting temperatures of titanium nanowires show remarkable dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm, there is no clear characteristic of first-order phase transition during the melting, implying a coexistence of solid and liquid phases due to finite size effect. An interesting structural transformation from helical multi-shell cylindrical to bulk-like rectangular is observed in the melting process of a thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure

    Self-organization and annealed disorder in a fracturing process

    Get PDF
    We show that a vectorial model for inhomogeneous elastic media self-organizes under external stress. An onset of crack avalanches of every duration and length scale compatible with the lattice size is observed. The behavior is driven by the introduction of annealed disorder, i.e., by lowering the breaking threshold in the neighborhood of a bond broken by the stress, with a process similar to self-organized criticality. A further comparison with experimental results of acoustic emission (AE), shows that the stability of the elastic potential energy of the system in the AE regime is a sufficient condition for reproducing the algebraic distribution of the energy released during cracks formation

    Atomic-scale modeling of the deformation of nanocrystalline metals

    Get PDF
    Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an ``optimal'' grain size, where the hardness is maximal. Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see http://www.fysik.dtu.dk/~schiotz/publist.htm
    corecore