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We show that a vectorial model for inhomogeneous elastic media self-organizes under extern
stress. An onset of crack avalanches of every duration and length scale compatible with the latt
size is observed. The behavior is driven by the introduction ofannealed disorder,i.e., by lowering
the breaking threshold in the neighborhood of a bond broken by the stress, with a process similar
self-organized criticality. A further comparison with experimental results of acoustic emission (AE)
shows that the stability of the elastic potential energy of the system in the AE regime is a sufficie
condition for reproducing the algebraic distribution of the energy released during cracks formatio
[S0031-9007(96)01196-9]
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Since the concept of self-organized criticality (SO
was introduced by Bak, Tang, and Wiesenfeld [1],
increasing number of physical situations showing t
behavior has been studied. In fact, SOC is observe
a variety of phenomena ranging from river evolution
and interface growth [3–5] to biological evolution [6
In analogy with usual critical systems, the behavior
SOC systems is characterized by the onset of long ra
correlations.

In common statistical systems, criticality is obtain
only after finely tuning some external parameter, e.
temperature. On the contrary, in SOC systems ther
no evidence of such a parameter, and instabilities oc
when the value of the relevant field exceeds locally so
threshold value (rigidity). Thus according to a diffusi
rule, the field perturbation spreads over the neighb
which in turn can be set into a metastable state (ab
their local threshold) and can relax over further neighbo
and so on. This can triggeravalanchesof any size and
duration producing the characteristic power law freque
distributions, due to the lacking of characteristic sca
in the process, i.e., self-similarity. Since there is
parameter to be adjusted in order to reach criticality,
says that the systemself-organizesinto acritical state.

Statistical self-similarity has been observed for a lo
time in seismic events [7], as well as in energy release
material fracturing [8] and many other different syste
subjected to stress [9]. It is therefore very tempting
investigate the possibility that the same critical dynam
holds from the large scale of earthquakes down
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the microscopic scale of the rheological properties
materials. In that case, as in usual critical phenomena
detailed aspects of different structures would be irrelev
with respect to the critical properties.

In this work we try to specify the conditions unde
which self-organization takes place in stressed mater
and to what extent it can explain the intriguing expe
mental properties of the related acoustic emission (A
In fact, the current understanding of dissipation in sol
is largely phenomenological. A well known feature th
determines the rupture process is the presence of diso
in the material. These inhomogeneities strongly influe
the mechanical behavior of the material and are respo
ble for the experimental patterns of AE, proving that e
ergy dissipation occurs in avalanches, whose size ran
from the scale of microscopic perturbations to the la
scale of the system size. Our purpose is to show that
onset of long range correlation in AE can be related
microscopical processes similar to those of simple S
automata models. Specifically, anecessary conditionfor
the AE power law behavior turns out to be the prese
of annealed disorderin the system.

To model the medium we use a version of the Bo
model (BM) [10] that is a generalization of Hookean ne
works of springs [11,12]. Fractal and topological prop
ties of BM have been investigated in the past [13,14]. W
start by considering a triangular lattice of sites in whi
each pair of sitesi, j is connected by an elastic (brittle
spring to which is assigned an elongation thresholdRi,j .
The elastic potential energy of the whole system is the s
© 1996 The American Physical Society 2503
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over all the springs present in the lattice

V 
1
2

X
i,j

Vij , (1)

where the sum is over nearest neighbor sites, andVij is the
potential energy of the individual spring.

Vij  sa 2 bd
£°

$ui 2 $uj

¢
? $rij

§
2 1 b

£
$ui 2 $uj

§
2. (2)

Here $ui is the displacement vector of sitei, $rij is the unit
vector between the rest positions of sitesi, j, anda and
b are force constants. We use a two dimensional latt
with periodic boundary conditions in one direction and
applied tensile stress along the other. Then we relax
system to the global energy minimum keeping the bou
aries fixed. Extensive numerical simulations are reali
in the b  0 case, and some results for theb fi 0 case
are reported. We recover qualitatively the experimen
AE behavioronly when short range correlation betwee
breaking thresholds, i.e., annealed disorder, is cons
ered. The annealing acts on the neighbors of the bro
springs lowering the rupture threshold of the springs ne
est neighbors. This means that one rupture weakens
set of bonds around simulating corrosion behavior or d
age spreading.

The breaking process is inspired to the rules of the s
plest automata models prototypes of SOC. A flowch
schematizing the dynamics steps is in Fig. 1. Steps f
2 to 4 are performed again over the springs that had t
threshold updated, in order to break them if their ene
is found to be above the new threshold. If this is t
case, more springs are broken and a newtoppling occurs.
One says than an “avalanche” is observed if one or m
springs are broken in the system between two cons
tive stretches. Hence we assign to each avalanche a
an energy, and a duration. The size is taken as the
tal number of broken springs between two consecu
elongations. The corresponding energy is computed s
ming up the energy carried by these springs before t
breakdown. The duration is determined as the numbe
consecutive relaxations (number of loops over steps 2
which the systems undergo before being further stretc
(step 1). The whole sequence of previous steps is
peated until the sample is totally broken. According w
the above rules, the energy of the system is stored in
springs and released with their rupture. To model
fracturing process, we start the simulations with a defe
free sample. We assign to each spring a failure thresh
uniformly distributed between0 and a maximum value re
lated to the total stress amount. In this work the beha
of the system is investigated in the limit of a vanishi
stress rate for each step (0.5% of the total stress). In this
way the dynamics of the lattice becomes very similar
the one investigated in Ref. [12].

In original sandpile models of SOC [1], sand grai
are added on the top of a sandpile, causing instabi
Every now and then a sand avalanche starts, and res
2504
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FIG. 1. Flowchart of the algorithm used in the simulation
The loop over steps 2 to 4 is repeated as long as new bond
broken, and is what we define as an avalanche. The simula
ends when the sample is broken in two pieces.

equilibrium. As a consequence, the system is kep
criticality: The average slope or height does not chan
but a small perturbation (added grain) may gener
events of any extension in size and time (avalanch
The system stores locally (rigidity) potential energy of t
incoming flux of sand and loses it releasing sand from
boundary. Similarly, in the case of elasticity, the appli
stress strains the system, and more and more energ
stored in the springs. This energy is then released thro
the onset of cracks and in AE. The equilibrium is resto
through the relaxation.

We compute crack-avalanche statistics by recording
number of broken springs (the size of an avalanche)
duration, and its energy, i.e., the energy lost by the bro
springs. We try to interpret this energy as the one relea
via AE. In real experiments this is measured outs
the sample and it is found to display similar power la
distributions in many different materials and experimen
situations [8,9].

We find that when onlyquenched disorderis consid-
ered, no avalanche behavior is observed. This can
understood by noting that in the limitDl ! 0, only one
spring at time breaks, the weakest. This continues u
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the breakdown of the system. This situation is analog
to that of the model for hydraulic fracturing investigat
in [15]. In fact in that model no power law is found
the avalanche statistics. In this situation the system
sembles the Duxbury-Leath [16] scenario. In fact wh
stress is applied, the failure instability initiates in an es
cially weak part of the material and the network stabiliz
with a flaw population generated by the failure process
the external stress increases by successive compositi
infinitesimal amounts, one reaches (breaking one sprin
a time) the critical stress for which the system underg
complete failure.

Instead whenannealed disorderis introduced, the
situation changes drastically. The frequency distribu
of crack sizes turns into a power law, reflecting
self-organization ofRij around the local stress value
Figure 2 shows the integrated distributionPsN . nd of
the numberN of broken springs to be greater thann,
for lattices of different size. These data are fitted w
a law PsN . nd  An2t11 1 B with an exponentt 
2.00 6 0.05. The annealed situation turns out to be clo
to the one described in Ref. [17], in which a model
the fracture of fibrous material is studied. In that mod
a critical behavior is found when the influence of therm
fluctuations is comparable with the disorder due to
interaction among fibers.

Our interpretation of this different behavior with r
spect to the randomness distribution is that the breakd
threshold and the annealed disorder, respectively, pla
role of the local rigidity and of the short-range couplin
that, as pointed out in Ref. [18], are essential ingredien
SOC behavior. In fact in our case the breakdown thre
old acts as the local rigidity (allowing local accumulati
of stress), while the annealed disorder mimics the topp
of
es

s

ed
FIG. 2. Cumulated frequency distribution of the number
broken springs during an avalanche for different lattice siz
200 simulations for a16 3 16 sites lattice;100 simulations for
a 32 3 32 sites lattice;100 simulations for a64 3 64 sites
lattice.
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process in sandpiles (short range distribution of the stre
making the bonds closer to the breakdown value. If o
of these ingredients is absent, systems behave in a d
sive way relaxing energies at the boundaries. More spe
cally, it is the presence of annealed disorder that allows
system to visit different metastable states, in which it sto
because of the presence of rigidity. Otherwise, a situa
similar to the one in Refs. [12,15,16] would take plac
where dynamics is ruled by extreme values in the pro
bility distribution of breaking thresholds.

One can assume to have AE proportional to the ene
of the springs broken during the crack evolution. B
measuring the behavior of this quantity we do not obt
the power law behaviors experimentally observed [8].
fact, one has to note that our finite system accumula
more and more energy in the springs not yet broken. T
implies that AE is a function of time in this limit. Instead
in our model, breaking processes involving a giv
number of springs will contribute in the same way to t
avalanche size statistics, independently from the differ
moment of the system evolution at which they happ
On the other hand, they will have a different weight
the statistics of the released energy, due to the fact
the variation of energy they induce is relatively lar
with respect to the total energy of our sample. Hen
with the particular rules chosen for the local correlatio
we expect that the system self-organizes (i.e., theRi,j ’s
arrange their values around the local stress) in orde
maintain a power law only in the number of broken bon
The energy drift gives rise to a correction term for the A
probability distribution, and it is reasonable that a pow
law can be recovered in the AE statistics by normaliz
the energy of each avalanche to the actual total energ
the lattice at that time. The behavior of cumulated a
normalized occurrence frequency,PsE0 . ed versuse, is
shown in Fig. 3. e is the normalized energy defined a
:

FIG. 3. Cumulated frequency distribution of the normaliz
energy lost during avalanches for the simulations of Fig. 2.
2505
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EyV sld, V sld being the total potential energy defined
Eq. (1) at lattice elongationl, andE being the sum of the
Vi,j for each bondi, j broken. It is seen that, according
the above reasoning, the three curves relative to diffe
lattice sizes collapse to a similar distribution. The fitti
function PsE0 . ed  Ae2g11 1 B gives g ø 1.2 1.3.
Assuming thate , nr, where n stands for the numbe
of broken bonds, a simple scaling relation yieldsr 
s1 2 tdys1 2 gd. With the previous values this brings
E ø V sldn4 for the energy released. Then a power l
distribution can be observed when the potential ene
stored in the system does not vary too much during
AE process. This seems reasonable for most real syst
where AE starts when approaching the plastic regime.

Finally, we report the statistics of durationt
of crack avalanches, Fig. 4. A critical behavi
PsT . td , t2d11 is again observed, with an expone
d  t  2.00 6 0.05. We have performed simulation
also for the casesb  0.5 andb  1. In our preliminary
results we find the same exponents for size and dura
of avalanches, i.e.,t  d  2, whereas AE seems to b
characterized by a little smaller exponentg ø 1.1.

In summary, we have introduced a generalized vers
of the Born model capable of describing a real phys
situation for the AE [8] in which SOC takes part. O
principal results are as follows.

(a) Scale invariance arises when correlation (annealing)
between the breaking of one bond and the bond’s nea
neighbors is considered. The resulting competition w
quenched disorder is closely related to SOC in
automata model, in which short range coupling a
rigidity are necessary ingredients to set the system
some point of marginal stability. This is responsible
the critical behavior, as opposed to the extreme va
statistics, typical of quenched disordered systems.

(b) Because of the particular chosen rules, criti
behavior is displayed in the avalanche size statist
he
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FIG. 4. Frequency distribution for the duration time of t
avalanches for the simulations of Fig. 2.
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and not in AE. However, a self-similar probabilit
distribution for this latter quantity is recovered when th
ratio of the released energy to the total lattice ene
(which sensibly increases with time in our model)
considered. This shows that a critical behavior of AE
compatible with systems where the elastic energy does
increase too much while straining. This is the situati
of most real systems undergoing external macrosco
strains in the vicinity of the plastic regime.

(c) The above point allows us to relate these pecu
scaling processes to “slowly” developing fractures.

We remark that a more complete understanding
these processes is relevant not only for a more comp
knowledge of the behavior of large statistical systems,
also from a technological point of view.
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