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We show that a vectorial model for inhomogeneous elastic media self-organizes under external
stress. An onset of crack avalanches of every duration and length scale compatible with the lattice
size is observed. The behavior is driven by the introductiomraiealed disorderi.e., by lowering
the breaking threshold in the neighborhood of a bond broken by the stress, with a process similar to
self-organized criticality. A further comparison with experimental results of acoustic emission (AE),
shows that the stability of the elastic potential energy of the system in the AE regime is a sufficient
condition for reproducing the algebraic distribution of the energy released during cracks formation.
[S0031-9007(96)01196-9]

PACS numbers: 64.60.Lx, 05.40.+j, 46.30.Nz, 62.20.Mk

Since the concept of self-organized criticality (SOC)the microscopic scale of the rheological properties of
was introduced by Bak, Tang, and Wiesenfeld [1], anmaterials. In that case, as in usual critical phenomena, the
increasing number of physical situations showing thisdetailed aspects of different structures would be irrelevant
behavior has been studied. In fact, SOC is observed iwith respect to the critical properties.

a variety of phenomena ranging from river evolution [2] In this work we try to specify the conditions under
and interface growth [3—5] to biological evolution [6]. which self-organization takes place in stressed materials
In analogy with usual critical systems, the behavior ofand to what extent it can explain the intriguing experi-
SOC systems is characterized by the onset of long rangmental properties of the related acoustic emission (AE).
correlations. In fact, the current understanding of dissipation in solids

In common statistical systems, criticality is obtainedis largely phenomenological. A well known feature that
only after finely tuning some external parameter, e.g., determines the rupture process is the presence of disorder
temperature. On the contrary, in SOC systems there im the material. These inhomogeneities strongly influence
no evidence of such a parameter, and instabilities occuhe mechanical behavior of the material and are responsi-
when the value of the relevant field exceeds locally soméle for the experimental patterns of AE, proving that en-
threshold value (rigidity). Thus according to a diffusive ergy dissipation occurs in avalanches, whose size ranges
rule, the field perturbation spreads over the neighbordrom the scale of microscopic perturbations to the large
which in turn can be set into a metastable state (abovscale of the system size. Our purpose is to show that the
their local threshold) and can relax over further neighborspnset of long range correlation in AE can be related to
and so on. This can triggexvalanchesof any size and microscopical processes similar to those of simple SOC
duration producing the characteristic power law frequencyautomata models. Specifically,n@cessary conditiofor
distributions, due to the lacking of characteristic scaleshe AE power law behavior turns out to be the presence
in the process, i.e., self-similarity. Since there is noof annealed disordein the system.
parameter to be adjusted in order to reach criticality, one To model the medium we use a version of the Born
says that the systeself-organizesnto acritical state. model (BM) [10] that is a generalization of Hookean net-

Statistical self-similarity has been observed for a longworks of springs [11,12]. Fractal and topological proper-
time in seismic events [7], as well as in energy release bties of BM have been investigated in the past [13,14]. We
material fracturing [8] and many other different systemsstart by considering a triangular lattice of sites in which
subjected to stress [9]. It is therefore very tempting toeach pair of siteg, j is connected by an elastic (brittle)
investigate the possibility that the same critical dynamicsspring to which is assigned an elongation threshigl.
holds from the large scale of earthquakes down tdThe elastic potential energy of the whole system is the sum
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over all the springs present in the lattice
1
V=3 ZV{]‘ ) 1)
i.j

1 apply an external stress
by stretching the sample
of an amount Al

where the sum is over nearest neighbor sites,}ant the
potential energy of the individual spring. '

Vij = (e — B)[(#; — uy) - 7]* + Bls — w;]*. (2)

AVALANCHE

2 calculate the displacement field
by minimizing the total energy
of eq. (1) keeping fixed / +A/

]
Hereu; is the displacement vector of site7;; is the unit E
vector between the rest positions of siieg, anda and E
B are force constants. We use a two dimensional lattice| 1
with periodic boundary conditions in one direction and an| !
applied tensile stress along the other. Then we relax th{ i
system to the global energy minimum keeping the bound- i 4

]
]
]
]

3 compute \gj for each bondij

aries fixed. Extensive numerical simulations are realizec
in the 8 = 0 case, and some results for tfge# 0 case
are reported. We recover qualitatively the experimental
AE behavioronly when short range correlation between

42
break bond, i.e.
disconnect ij

breaking thresholds, i.e., annealed disorder, is consid- v
ered The annealing acts on the neighbors of the broker 4.3

springs lowering the rupture threshold of the springs near: NO “weaken"” bonds
est neighbors. This means that one rupture weakens th 0.0, offy

set of bonds around simulating corrosion behavior or dam:
age spreading.

The breaking process is inspired to the rules of the sim-
plest automata models prototypes of SOC. A flowchart
schematizing the dynamics steps is in Fig. 1. Steps fron
2 to 4 are performed again over the springs that had thei
_threshold updated, in order to break them if the?r anerg)f:IG 1. Flowchart of the algorithm used in the simulations
is found to be above the new threshold. If this is theThe loop over steps 2 to 4 isgrepeated as long as new bonds are

case, more springs are broken and a mepplingoccurs.  proken, and is what we define as an avalanche. The simulation
One says than an “avalanche” is observed if one or morends when the sample is broken in two pieces.

springs are broken in the system between two consecu-
tive stretches. Hence we assign to each avalanche a sizguilibrium. As a consequence, the system is kept at
an energy, and a duration. The size is taken as the tariticality: The average slope or height does not change,
tal number of broken springs between two consecutivdout a small perturbation (added grain) may generate
elongations. The corresponding energy is computed sunevents of any extension in size and time (avalanches).
ming up the energy carried by these springs before theifhe system stores locally (rigidity) potential energy of the
breakdown. The duration is determined as the number dhcoming flux of sand and loses it releasing sand from the
consecutive relaxations (number of loops over steps 2—4)oundary. Similarly, in the case of elasticity, the applied
which the systems undergo before being further stretchestress strains the system, and more and more energy is
(step 1). The whole sequence of previous steps is restored in the springs. This energy is then released through
peated until the sample is totally broken. According withthe onset of cracks and in AE. The equilibrium is restored
the above rules, the energy of the system is stored in thiarough the relaxation.
springs and released with their rupture. To model the We compute crack-avalanche statistics by recording the
fracturing process, we start the simulations with a defectnumber of broken springs (the size of an avalanche), its
free sample. We assign to each spring a failure thresholdluration, and its energy, i.e., the energy lost by the broken
uniformly distributed betweef and a maximum value re- springs. We try to interpret this energy as the one released
lated to the total stress amount. In this work the behaviovia AE. In real experiments this is measured outside
of the system is investigated in the limit of a vanishingthe sample and it is found to display similar power law
stress rate for each sten.3% of the total stress). In this distributions in many different materials and experimental
way the dynamics of the lattice becomes very similar tosituations [8,9].
the one investigated in Ref. [12]. We find that when onlyguenched disordeis consid-

In original sandpile models of SOC [1], sand grainsered, no avalanche behavior is observed. This can be
are added on the top of a sandpile, causing instabilityunderstood by noting that in the limi/ — 0, only one
Every now and then a sand avalanche starts, and restorggring at time breaks, the weakest. This continues up to
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the breakdown of the system. This situation is analogouprocess in sandpiles (short range distribution of the stress),
to that of the model for hydraulic fracturing investigated making the bonds closer to the breakdown value. If one
in [15]. In fact in that model no power law is found in of these ingredients is absent, systems behave in a diffu-
the avalanche statistics. In this situation the system resive way relaxing energies at the boundaries. More specifi-
sembles the Duxbury-Leath [16] scenario. In fact whercally, it is the presence of annealed disorder that allows the
stress is applied, the failure instability initiates in an espesystem to visit different metastable states, in which it stops
cially weak part of the material and the network stabilizesbecause of the presence of rigidity. Otherwise, a situation
with a flaw population generated by the failure process. Isimilar to the one in Refs. [12,15,16] would take place,
the external stress increases by successive compositionwhere dynamics is ruled by extreme values in the proba-
infinitesimal amounts, one reaches (breaking one spring dility distribution of breaking thresholds.
a time) the critical stress for which the system undergoes One can assume to have AE proportional to the energy
complete failure. of the springs broken during the crack evolution. By
Instead whenannealed disorderis introduced, the measuring the behavior of this quantity we do not obtain
situation changes drastically. The frequency distributiorthe power law behaviors experimentally observed [8]. In
of crack sizes turns into a power law, reflecting thefact, one has to note that our finite system accumulates
self-organization ofR;; around the local stress values. more and more energy in the springs not yet broken. This
Figure 2 shows the integrated distributiédN > n) of  implies that AE is a function of time in this limit. Instead,
the numberN of broken springs to be greater than in our model, breaking processes involving a given
for lattices of different size. These data are fitted withnumber of springs will contribute in the same way to the
alawP(N > n) = An~""! + B with an exponent- =  avalanche size statistics, independently from the different
2.00 = 0.05. The annealed situation turns out to be closemoment of the system evolution at which they happen.
to the one described in Ref. [17], in which a model forOn the other hand, they will have a different weight in
the fracture of fibrous material is studied. In that modelthe statistics of the released energy, due to the fact that
a critical behavior is found when the influence of thermalthe variation of energy they induce is relatively large
fluctuations is comparable with the disorder due to thewith respect to the total energy of our sample. Hence
interaction among fibers. with the particular rules chosen for the local correlation,
Our interpretation of this different behavior with re- we expect that the system self-organizes (i.e., Rhgs
spect to the randomness distribution is that the breakdowarrange their values around the local stress) in order to
threshold and the annealed disorder, respectively, play thmaintain a power law only in the number of broken bonds.
role of the local rigidity and of the short-range couplings The energy drift gives rise to a correction term for the AE
that, as pointed out in Ref. [18], are essential ingredients gbrobability distribution, and it is reasonable that a power
SOC behavior. In fact in our case the breakdown threshlaw can be recovered in the AE statistics by normalizing
old acts as the local rigidity (allowing local accumulation the energy of each avalanche to the actual total energy of
of stress), while the annealed disorder mimics the topplinghe lattice at that time. The behavior of cumulated and
normalized occurrence frequend(E’ > ¢) versuse, is

0000 | shown in Fig. 3. ¢ is the normalized energy defined as
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FIG. 2. Cumulated frequency distribution of the number of
broken springs during an avalanche for different lattice sizes
200 simulations for al6 X 16 sites lattice;100 simulations for
a 32 X 32 sites lattice;100 simulations for a64 X 64 sites FIG. 3. Cumulated frequency distribution of the normalized
lattice. energy lost during avalanches for the simulations of Fig. 2.
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E/V(l), V(I) being the total potential energy defined inand not in AE. However, a self-similar probability
Eqg. (1) at lattice elongatioh andE being the sum of the distribution for this latter quantity is recovered when the
V;,; for each bond, j broken. Itis seen that, according to ratio of the released energy to the total lattice energy
the above reasoning, the three curves relative to differer{ivhich sensibly increases with time in our model) is
lattice sizes collapse to a similar distribution. The fitting considered. This shows that a critical behavior of AE is
function P(E' > e) = Ae”?*! + B givesy = 1.2-1.3.  compatible with systems where the elastic energy does not
Assuming thate ~ n”, wheren stands for the number increase too much while straining. This is the situation
of broken bonds, a simple scaling relation yields=  of most real systems undergoing external macroscopic
(1 — 7)/(1 = y). With the previous values this brings to strains in the vicinity of the plastic regime.
E = V(I)n* for the energy released. Then a power law (c) The above point allows us to relate these peculiar
distribution can be observed when the potential energgcaling processes to “slowly” developing fractures.
stored in the system does not vary too much during the We remark that a more complete understanding of
AE process. This seems reasonable for most real systenthgse processes is relevant not only for a more complete
where AE starts when approaching the plastic regime. knowledge of the behavior of large statistical systems, but
Finally, we report the statistics of duration  also from a technological point of view.
of crack avalanches, Fig.4. A critical behavior It is a pleasure to thank H. Herrmann, A. Maritan,
P(T > 1) ~ t %" is again observed, with an exponentS. Roux, A. Vespignani, and S. Zapperi for valuable
6 = 7 =2.00 = 0.05. We have performed simulations discussions and suggestions.
also for the caseg = 0.5 andB = 1. In our preliminary
results we find the same exponents for size and duration
of avalanches, i.ex = 6 = 2, whereas AE seems to be
characterized by a little smaller exponent= 1.1.
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