107 research outputs found

    A higher-order split-step Fourier parabolic-equation sound propagation solution scheme

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 132 (2012): EL61-EL67, doi:10.1121/1.4730328.A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.This work was sponsored by the Office of Naval Research under Grants No. N00014-10- 1-0040 and No.N00014-11-1-0701

    An iterative three-dimensional parabolic equation solver for propagation above irregular boundaries

    Get PDF
    This paper describes the development of an iterative three-dimensional parabolic equation solver that takes into account the effects of irregular boundaries and refraction from a layered atmosphere. A terrain-following coordinate transformation, based on the well-known Beilis-Tappert mapping, is applied to the narrow-angle parabolic equation in an inhomogeneous media. The main advantage of this approach, which has been used in two dimensions in the past, is the simplification of the impedance boundary condition at the earth surface. The transformed initial-boundary value problem is discretized using the Crank-Nicholson marching scheme in the propagating direction and second-order finite-differences in the transversal plane. The proposed method relies on an efficient iterative fixed-point solver which involves the inversion of tridiagonal matrices only. The accuracy of the method is evaluated through a comparison with boundary element simulations in a homogeneous atmosphere above a Gaussian hill. Results show that transversal scattering occur in the shadow zone of the obstacle where the 2D parabolic equation underestimates the pressure amplitude. The model is particularly suited for the simulation of infrasound in a three-dimensional environment with realistic topographie

    Ray-based description of normal mode amplitudes in a range-dependent waveguide

    Full text link
    An analogue of the geometrical optics for description of the modal structure of a wave field in a range-dependent waveguide is considered. In the scope of this approach the mode amplitude is expressed through solutions of the ray equations. This analytical description accounts for mode coupling and remains valid in a nonadiabatic environment. It has been used to investigate the applicability condition of the adiabatic approximation. An applicability criterion is formulated as a restriction on variations of the action variable of the ray.Comment: 11 pages, 5 figure

    Primary carbonatite melt from deeply subducted oceanic crust

    Get PDF
    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.4 page(s

    Proper-motion age dating of the progeny of Nova Scorpii AD 1437.

    Get PDF
    'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions

    VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way

    Get PDF
    We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 h of observations with the 4-m VISTA telescope during 5 years (2010–2014), covering ∼109 point sources across an area of 520 deg2, including 33 known globular clusters and ∼350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9–2.5 μm) and a catalogue of more than 106 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars.Facultad de Ciencias Astronómicas y Geofísica
    corecore