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An iterative three-dimensional parabolic equation solver
for propagation above irregular boundaries
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ABSTRACT:
This paper describes the development of an iterative three-dimensional parabolic equation solver that takes into

account the effects of irregular boundaries and refraction from a layered atmosphere. A terrain-following coordinate

transformation, based on the well-known Beilis-Tappert mapping, is applied to the narrow-angle parabolic equation

in an inhomogeneous media. The main advantage of this approach, which has been used in two dimensions in the

past, is the simplification of the impedance boundary condition at the earth’s surface. The transformed initial-

boundary value problem is discretized using the Crank-Nicholson marching scheme in the propagating direction and

second-order finite-differences in the transversal plane. The proposed method relies on an efficient iterative fixed-

point solver, which involves the inversion of tridiagonal matrices only. The accuracy of the method is evaluated

through a comparison with boundary element simulations in a homogeneous atmosphere above a Gaussian hill.

Results show that transversal scattering occurs in the shadow zone of the obstacle where the two-dimensional para-

bolic equation underestimates the pressure amplitude. The model is particularly suited for the simulation of infra-

sound in a three-dimensional environment with realistic topographies. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Among the many numerical methods for long-range

wave propagation, the parabolic equation (PE) has been

proven to be one of the most efficient and versatile. This

approximation to the Helmholtz equation, governing the

propagation of a harmonic wave of angular frequency

x ¼ 2pf , was first introduced by Leontovich (1944) in the

context of electromagnetic propagation. It was then applied

to underwater acoustics (Tappert, 1977) and atmospheric

acoustics (West et al., 1992; White, 1989) with very promis-

ing results. While initial formulations of the PE were con-

strained to two-dimensional (2D) space (Collins, 1989;

Thomson and Chapman, 1983), later models harnessed bet-

ter computational resources to model three-dimensional

(3D) propagation (Lee et al., 1992; Siegmann et al., 1985;

Sturm, 2005). Over the past decades, substantial efforts have

been dedicated to the study of theoretical and numerical

aspects of the PE, leading to an increased number of practi-

cal applications. Extensive literature reviews of existing PE

models and case studies are available in Lee et al. (2000)

and Xu et al. (2016).

Since the PE method is an initial-boundary value prob-

lem (IBVP), the treatment of the boundary condition at the

ground surface is crucial to the accurate estimation of the

scattered field. In atmospheric acoustics, the ground is usu-

ally modeled as a locally or extended reacting surface with

an acoustic impedance that is extracted from porous ground

models (Attenborough, 1985; Attenborough et al., 2011).

When the boundary is flat, the impedance boundary condi-

tion (IBC) is readily included in the numerical scheme.

However, the presence of irregular terrain at the bottom

edge makes the numerical solution of the PE more challeng-

ing to implement. A common solution is to use a boundary

fitted coordinate transform to express the PE in a numerical

domain with a flat ground. Such techniques have been

extensively used in 2D: notable contributions include the

Generalized Terrain PE (GTPE) (Sack and West, 1995) and

the Beilis-Tappert PE (BTPE) (Parakkal et al., 2012), which

both rely on the Beilis and Tappert (1979) mapping. A simi-

lar approach has been used in conjunction with finite-

elements by Kampanis et al. (2013) to model propagation

over irregular terrain in a refractive atmosphere.

A recurring issue in atmospheric acoustics is the model-

ing of 3D effects from irregular terrain, which plays an

important role in situations where out-of-plane propagation

cannot be ignored. In particular, the inclusion of irregular

boundaries in the 3D PE is an open problem that has no

straightforward solution. In the past, a few authors have

managed to include irregular boundaries in the 3D PE,

including Silva et al. (2012), who extended the Beilis-

Tappert method to model 3D electromagnetic propagation

above irregular terrain and used a direct solver to compute

the solution. More recently, Lin (2019) has introduced a

slip-step boundary-fitted 3D PE, based on non-uniform

Galerkin discretization, for the inclusion of irregular wave-

guides in the context of underwater sound propagation. In

a)Electronic mail: codor.kh@gmail.com, ORCID: 0000-0003-4059-8521.
b)ORCID: 0000-0001-7826-7635.
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this paper, a 3D version of the Beilis-Tappert mapping is

used to express the 3D PE in a shifted coordinate system

with simplified boundary conditions at the ground surface.

Numerical solutions of 3D problems are significantly

more challenging to derive and implement than for 2D prob-

lems. When the three-dimensional parabolic equation (3D

PE) is solved through direct methods, either with finite-

differences (Cheng et al., 2009) or finite-elements (Sturm

and Kampanis, 2007), the resulting linear system involves

very large sparse matrices. Such linear systems are computa-

tionally intensive to solve and typically require the use of

iterative methods, such as the Generalized Minimal

Residual (GMRES) or the Bi-Conjugate Gradient (BiCG)

(Saad, 2003). To avoid this difficulty, most 3D PE models

rely on the Alternate Direction Implicit (ADI) numerical

scheme, which involves a splitting of the square-root opera-

tor into two one-dimensional (1D) operators (Sturm, 2005;

Lin et al., 2012). In this paper, a different approach, based

on matrix equations and involving tridiagonal matrices only,

is used to solve the 3D PE in the transformed coordinate sys-

tem. Such a method has been previously used in electromag-

netic propagation by Zelley and Constantinou (1999), who

showed its suitability for the inclusion of irregular terrain in

3D. It is here adapted to acoustic propagation in a refractive

atmosphere.

The rest of the paper is organized as follows: the Beilis-

Tappert coordinate transformation is applied to the narrow-

angle 3D PE in a refractive atmosphere in Sec. II, the finite-

difference discretization and iterative numerical scheme are

presented in Sec. III, validation against the acoustic bound-

ary element method (BEM) for a simple scattering case in a

homogeneous atmosphere is provided in Sec. IV, conclu-

sions and further suggestions are given in Sec. V.

II. MATHEMATICAL MODELING

Here we present the general theory behind the PE

method in a 3D Cartesian space, described by the coordinate

system, x ¼ ðx; y; zÞ. This requires considering the inclusion

of: a layered moving atmosphere (Sec. II A), the topography

of the ground surface via a Bellis-Tappert coordinate trans-

form (Sec. II B), the impedance boundary conditions at the

ground surface (Sec. II C), and the Gaussian starter field

(Sec. II D).

A. Parabolic equation in a layered moving
atmosphere

In atmospheric acoustics, the atmosphere is generally

assumed to be a layered medium, defined by a temperature

T(z), density qðzÞ, and wind velocity vðzÞ ¼ ðvx; vy; vzÞ.
When sound propagates in a stratified motionless medium,

the wavefront turns according to the gradient of the sound

speed c(z), following Snell’s law. This effect is known as

refraction and plays a major role in low-frequency propaga-

tion at long ranges. For an adiabatic atmosphere, the sound

speed is given by

cðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRTðzÞ

p
¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðzÞ=T0

p
; (1)

where c ¼ 1:4 is the specific heat ratio of air, R ¼ 287 J/(kg.K)

is the perfect gas constant of dry air, T0 is the temperature at

the ground surface, and c0 is the corresponding adiabatic

sound speed. An important simplification of the atmospheric

model can be achieved by the effective sound speed approx-

imation, which includes the medium motion through an

effective sound speed defined as ceffðzÞ ’ cðzÞ þ vðzÞ � s
where s is the unit vector tangential to the sound ray. Taking

x to be the direction of propagation leads to

ceffðzÞ ¼ cðzÞ þ vxðzÞ; (2)

and the effective wavenumber is defined as keff ¼ x=ceff .

While this assumption has limitations, extensively discussed

in Godin (2002), it considerably simplifies the governing

equations for an inhomogeneous moving medium.

In this context, Ostashev and Wilson (2016) provide the

following narrow-angle PE for an inhomogeneous moving

atmosphere;

2ik0

@

@x
þ D? þ dk2

eff þ
2ik0

c0

v? � r?
� �

w ¼ 0; (3)

where v? is the transversal wind velocity, r? is the trans-

versal gradient, D? ¼ r2
? is the transversal Laplacian oper-

ator, k0 ¼ x=c0 is the ambient acoustic wavenumber, and

dk2
eff ¼ k2

eff � k2
0 is the effective wavenumber variation. In

the corresponding reference, Eq. (3) is derived without using

the effective sound speed approximation, and keff is here

introduced to regroup refractive terms. In Eq. (3), w is the

complex pressure envelope, defined as

wðx;xÞ ¼ pðx;xÞe�ik0x: (4)

The wave field w represents the part of the complex pres-

sure p that varies slowly with the distance x. Equation (3)

is valid as long as the wavelength is small compared to the

characteristic length of the medium inhomogeneity. The

last term in Eq. (3) represents advection from wind in the

transversal directions and can be neglected for weak wind

conditions, in which case Eq. (3) reduces to the standard

narrow-angle PE, well known in the literature (Lee et al.,
1992; Tappert, 1977; Sturm, 2005). Density variation with

altitude is taken into account by multiplying the complex

pressure w by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðzÞ=q0

p
, where q0 is the reference

density, without loss of accuracy (Ostashev and Wilson,

2016). The PE given in Eq. (3) is well suited for atmo-

spheric acoustics and is used here to model long range

propagation over irregular terrain.

B. Beilis-Tappert coordinate transformation

A boundary-following coordinate transformation is

applied to the narrow-angle PE, given in Eq. (3), in order to

transform the physical domain, with an irregular boundary,

into a numerical domain with a flat bottom surface. Such a

1090 J. Acoust. Soc. Am. 148 (2), August 2020 Khodr et al.
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procedure has already been used with the 2D PE, first by

Beilis and Tappert (1979). The 3D Beilis-Tappert mapping

can be defined as

n ¼ x;

� ¼ y;

g ¼ z� hðx; yÞ; (5)

where n ¼ ðn; �; gÞ are the coordinates of the transformed

domain and h is the boundary profile. It is worth noting that

the terrain profile h can be expressed in either coordinate

system. To proceed, the spatial derivatives in the physical

coordinate system x ¼ ðxiÞ ¼ ðx; y; zÞ are replaced using the

chain rule, as

@

@xi
¼
X3

k¼1

@nk

@xi

@

@nk
; (6a)

@2

@xi@xj
¼
X3

k¼1

@2nk

@xi@xj

@

@nk
þ
X3

k¼1

X3

n¼1

@nk

@xi

@nn

@xj

@2

@nk@nn
;

(6b)

where n1 ¼ n; n2 ¼ �, and n3 ¼ g. The chain rules given by

Eqs. (6a) and (6b) are then used to express the spatial deriv-

atives in Eq. (3) and obtain an equation for the complex

pressure envelope w in the new coordinate system. Thus,

Eq. (3) becomes

2ik0

@w
@n
� @h

@n
þMy

@h

@�
�Mz

� �
@w
@g
þMy

@w
@�

� �

þD�?wþ dk2
effw ¼ 0; (7)

where Mz ¼ vz=c0; My ¼ vy=c0, and D�? is the transversal

Laplacian operator, expressed in the transformed coordinate

system ðn; �; gÞ, given by

D�? ¼
@2

@g2
þ @h

@�

� �2
@2

@g2
þ @2

@�2
� @

2h

@�2

@

@g
� 2

@h

@�

@2w
@g@�

:

(8)

After inspecting Eq. (7), it appears that the coordinate

transformation in Eq. (5) has introduced a number of

additional terms. Equation (7) can be further simplified

by assuming all terms in the Laplacian containing deriv-

atives of h to be negligible, which holds if the terrain

varies slowly in the transversal direction. This assump-

tion is consistent with the narrow-angle approximation,

which limits the accuracy of the Beilis-Tappert mapping

to sloping angles of 20� (Parakkal et al., 2012).

Therefore,

D�? �
@2

@g2
þ @2

@�2
: (9)

Grouping derivatives direction-wise, the narrow-angle 3D

PE given by Eq. (7) becomes

@w
@n
¼ ik0

2
ðZ� þ Y�Þw (10)

in the new coordinate system ðn; �; gÞ, where the trans-

formed differential operators Z�; Y� are given by

Z� ¼ 1

k2
0

@2

@g2
þ dk2

eff

k2
0

� 2i

k0

@h

@n
þMy

@h

@�
�Mz

� �
@

@g
;

(11a)

Y� ¼ 1

k2
0

@2

@�2
þ 2iMy

k0

@

@�
: (11b)

The operators in Eqs. (11a) and (11b) include atmospheric

refraction in three geometrical directions. However, wind is

usually assumed to be horizontal in a realistic atmosphere,

so the z-component of the wind velocity can be neglected

and Mz ¼ 0. For a homogeneous atmosphere, the propaga-

tion medium is motionless and Mz ¼ My ¼ 0. The PE

derived in Eq. (10) is a 3D counterpart of the 2D Beilis-

Tappert PE derived by Parakkal et al. (2012),

@/
@n
¼ i

2k0

@2/
@g2
þ dk2

eff/

 !
� ik0g

dh

dn
/; (12)

where / is a modulated complex pressure given by

/ ¼ we�ih and h is a phase shift defined as

hðn; gÞ ¼ k0gþ
k0

2

ðn

0

dh

dn

� �2

dn: (13)

The 2D BTPE in Eq. (12) can be obtained from Eq. (10) by

assuming a motionless medium (v ¼ 0) and an invariant

complex pressure along �. Therefore, the formulation in Eq.

(10) is expected to correctly account for out-of-plane scat-

tering from irregular boundaries (obstacles, terrain, etc.) and

horizontal refraction from crosswinds.

The narrow-angle BTPE in Eq. (12) is also related to

the GTPE) derived by Sack and West (1995). The main

advantage of the Beilis-Tappert coordinate transform, given

by Eq. (5), is the considerable simplification of the imped-

ance boundary condition at the ground surface. Other formu-

lations of the 3D PE, especially in the context of underwater

acoustics, rely on an extended reacting model, where the

ground material is characterized by a density qg and sound

speed cg (Zhu and Bjørnø, 2000).

C. Approximate impedance boundary condition

The ground surface (i.e., the interface between the

ground material and the atmosphere) is governed by a 3D

IBC of the form

ðn � rÞp ¼ ik0

Zg
p; (14)

where Zg is the ground surface impedance and n � r is the

directional derivative taken along the normal vector n. At
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the ground boundary, defined by the 2D surface

@P : fSðx; y; zÞ ¼ hðx; yÞ � z ¼ 0g, the unit normal vector

is given by

n ¼ rSjrSj ¼
ðtan hx; tan hy;�1ÞT

jrSj ; (15)

where S is the equation of the ground surface, hx is the ter-

rain slope along x, and hy is the transversal terrain slope

along y (i.e., tan hx ¼ @h=@x and tan hy ¼ @h=@y). So,

inserting Eq. (15) into Eq. (14) leads to

tan hx
@p

@x

� �
þ tan hy

@p

@y

� �
� @p

@z

� �
¼ ik0YgjrSjp;

(16)

where Yg ¼ 1=Zg is the ground admittance. Using the rela-

tion p ¼ eik0xw results in the following 3D IBC for the com-

plex pressure envelope w,

tan hx
@w
@x

� �
þ tan hy

@w
@y

� �
� @w

@z

� �
¼ ik0Y0gw;

(17)

where Y0g ¼ jrSj=Zg � tan hx. To use the above IBC in the

3D PE, one first needs to express the equation in the shifted

coordinate system. At the ground level (i.e., at g ¼ 0) we

have k ¼ k0 and the density is qð0Þ ¼ q0 so the impedance

boundary condition in the shifted coordinate system

ðn; �; gÞ is

tan hx
@w
@n

� �
þ tan hy

@w
@�

� �

�ð tan 2hx þ tan 2hy � 1Þ @w
@g

� �
¼ ik0Y0gw; (18)

which is valid at the interface g ¼ 0. Equation (18) includes

derivatives with respect to n and � that were not present in the

case of a flat boundary, which makes the boundary condition

more difficult to implement in the numerical scheme. This is

due to the non-orthogonality of the coordinate transform since

the grid is not normal to the bottom boundary. In Parakkal

et al. (2010), the use of a polar conformal mapping allowed for

an equivalent IBC that has a form @w=@g ¼ ik0Yg þ v=2,

where v is the local curvature of the ground surface. In the pre-

sent method, the staircase approximation is used, and the

ground is assumed to be locally flat, which leads to hx

¼ hy � 0 in Eq. (18). Furthermore, Y0g ¼ Yg ¼ 1=Zg and the

impedance boundary condition becomes

@w
@g

� �
g¼0

¼ ik0YgðwÞg¼0: (19)

The boundary condition given by Eq. (19) will be used to

evaluate the pressure field w at g ¼ 0 in the new coordinate

system. The ground impedance Zg contains information

about the surface micro-structure and response to a traveling

sound wave. Many theoretical and experimental models for

porous grounds are given by Attenborough et al. (2011),

usually involving several physical parameters, such as den-

sity, porosity, and flow resistivity.

D. Starting field

To solve the problem numerically, an initial condition

on the complex pressure w at n ¼ 0 is required. In many

problems in atmospheric acoustics and infrasound, acoustic

sources are modeled by monopole sources. In the context of

the PE, the usual approach consists in choosing w ¼ w0, at n
¼ 0, in such a way that the resulting solution exhibits spheri-

cal spreading and directivity in the far-field. Salomons

(2001) gives the following Gaussian starter for the 2D PE,

w0ðzÞ ¼
ffiffiffiffiffi
k0

p
exp �ðz� zsÞ2

2k2
0

 !
: (20)

A similar initial condition can be obtained for the 3D PE by

extending the derivation given in Jensen et al. (2011), lead-

ing to

w0ðy; zÞ ¼ k0 exp �ðz� zsÞ2

2k2
0

 !
� exp �ðy� ysÞ2

2k2
0

 !
:

(21)

The expression in Eq. (21) will be used in Sec. V to validate

the 3D BTPE against BEM simulations.

III. NUMERICAL SCHEME

Along the propagation direction n, the field is discre-

tized into Nn points n1;…; nNn
, so the waveguide consists of

a succession of Nn transversal planes, as shown in Fig. 1. In

altitude, the domain is discretized into Ng points g1;…; gNg

and, transversally, into N� points �1;…; �N�
. The value of w

at the grid point ðnm; �j; gnÞ is wm
n;j and Wm ¼ ðwm

n;jÞn;j is the

matrix of the values of w in the plane n ¼ nm,

Wm ¼

wm
1;1 wm

1;2 � � � wm
1;N�

wm
2;1 wm

2;2 � � � wm
2;N�

..

. ..
. . .

. ..
.

wm
Ng;1

wm
Ng;2

� � � wm
Ng;N�

0
BBBBBB@

1
CCCCCCA
: (22)

For the 3D PE, a marching scheme can be derived for

Vm ¼ vecðWmÞ, which is a vector of size ðN� � NgÞ
obtained by stacking the columns of Wm (Sturm and

Kampanis, 2007), i.e.,

Vm ¼ ðwm
1;1;…;wm

Ng;1
;…;wm

n;j;…wm
Ng;N�
ÞT :

A direct finite-difference solution requires the inversion of a

sparse system of a size N3D ¼ Ng � N� , leading to prohibi-

tive scales for larger domains. To avoid such difficulty, the
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3D PE is usually solved using tailored iterative solutions

that take advantage of the matrix structure and reduce the

amount of memory required. In this section, the narrow-

angle 3D BTPE derived in Eq. (10) is solved using an itera-

tive fixed-point method (Zelley and Constantinou, 1999),

which seeks the solution at nmþ1 by a recursive refinement

of the solution at nm. The advantage of this method is that it

can generate an arbitrarily accurate solution, as long as a sta-

bility condition is met.

The remainder of this section is structured as follows:

in Sec. III A, the numerical solution is obtained by discre-

tizing the governing equation using finite-differences. In

Sec. III B, the boundary conditions are discretized at the

boundary points. In Sec. III C, an absorbing layer is defined

for the damping of reflections from the domain boundaries.

In Sec. III D, the marching scheme is written in matrix

form, leading to a linear system. In Sec. III E, the iterative

fixed-point algorithm is outlined and the stability condition

discussed.

A. Finite-difference discretization

The 3D BTPE, given in Eq. (10), is solved by marching

the solution in the direction n, starting from an initial value

in the source plane n ¼ 0. Assuming that w is known at a

given range n, the field can be determined at nþ Dn, and so

on, until the wave has propagated through the whole

domain. Between nm and nmþ1 ¼ nm þ Dn, the marching

scheme takes the incremental form (Lee and McDaniel,

1988),

wmþ1 ¼ exp Dn
@

@n

� �
wm; (23)

where wm ¼ wðnmÞ is a known field and wmþ1 ¼ wðnmþ1Þ is

to be computed. After inserting Eq. (10) into Eq. (23), the

range derivative is replaced and the following equation is

obtained

wmþ1 ¼ exp
ik0Dn

2
Z� þ Y�ð Þ

� �
wm: (24)

The Crank-Nicholson method is applied to Eq. (24), which

leads to

exp � ik0Dn
4
Z� þ Y�ð Þ

� �
wmþ1

¼ exp
ik0Dn

4
Z� þ Y�ð Þ

� �
wm: (25)

The exponential operators in Eq. (25) are then approximated

using a first-order Taylor approximation, which yields the

following marching scheme:

1þ l�0 Z� þ Y�ð Þ
� �

wmþ1 ¼ 1þ lþ0 Z� þ Y�ð Þ
� �

wm;

(26)

where l6
0 ¼ 6ik0Dn=4. Evaluating the semi-discretized

marching scheme, defined in Eq. (26), at a transversal grid

point n? ¼ ð�j; gnÞ leads to the following system:

B�2;j;n
@2w
@�2

� �mþ1

n;j
þA�2;j;n

@2w
@g2

 !mþ1

n;j

þB�1;j;n
@w
@�

� �mþ1

n;j

þA�1;j;n
@w
@g

� �mþ1

n;j

þA�0;j;nw
mþ1
n;j

¼ Bþ2;j;n
@2w
@�2

� �m

n;j
þAþ2;j;n

@2w
@g2

 !m

n;j

þBþ1;j;n
@w
@�

� �m

n;j

þAþ1;j;n
@w
@g

� �m

n;j

þAþ0;j;nw
m
n;j; (27)

where the spatially varying coefficients A6
2 ; A6

1 ; A6
0 and B6

2

in Eq. (27) are defined as

A6
0;j;n ¼ 1þ l6

0

k2
0

k2
n � k2

0

	 

; (28a)

A6
1;j;n¼�

2il6
0

k0

@h

@n

� �
m;j

�2il6
0

k0

My;n
@h

@�

� �
m;j

�Mz;n

 !
;

(28b)

A6
2;j;n ¼

l6
0

k2
0

; (28c)

B6
1;j;n ¼

2il6
0

k0

My;n; (28d)

B6
2;j;n ¼

l6
0

k2
0

; (28e)

where kn ¼ keffðgnÞ. The first-order and second-order spatial

derivatives of the wave field w in Eq. (27) are discretized

using finite-differences. At a given grid point ðnm; �j; gnÞ,
where m ¼ 1;…;Nn; j ¼ 1;…;N� , and n ¼ 1;…;Ng, the

FIG. 1. (Color online) Discretization of the numerical domain D� into a

Cartesian grid of size Nn � N� � Ng, where wm
n;j is the value of the complex

envelope w at the grid point ðnm; �j; gnÞ.
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first- and second-order spatial derivatives with respect to the

altitude g are given by Fornberg (1988):

@2w
@g2

 !m

n;j

¼
wm

nþ1;j � 2wm
n;j þ wm

n�1;j

Dg2
; (29a)

@w
@g

� �m

n;j

¼
wm

nþ1;j � wm
n�1;j

2Dg
; (29b)

where Dg ¼ gnþ1 � gn is the uniform grid spacing.

Similarly, the first-order and second-order derivatives in the

transversal direction � are defined as

@2w
@�2

� �m

n;j
¼

wm
n;jþ1 � 2wm

n;j þ wm
n;j�1

D�2
; (30a)

@w
@�

� �m

n;j

¼
wm

n;jþ1 � wm
n;j�1

2D�
: (30b)

Inserting the finite-difference formulas, given in Eqs. (29a)

to (30b), into Eq. (27) gives rise to a 10-point discrete sys-

tem, containing wm
n;j; wmþ1

n;j , and their four neighboring

points,

X1

d¼�1

M�d;n;jw
mþ1
nþd;j þ

X1

d¼�1

P�d;n;jw
mþ1
n;jþd

¼
X1

d¼�1

Mþd;n;jw
m
nþd;j þ

X1

d¼�1

Pþd;n;jw
m
n;jþd; (31)

for j ¼ 1;…;N� and n ¼ 1;…;Ng. The finite-difference

weights M6
d;n;j and P6

d;n;j in Eq. (31) are given by

M6
�1;n;j ¼

A6
2;j;n

Dg2
�

A6
1;j;n

2Dg
; (32a)

M6
0;n;j ¼

�2A6
2;j;n

Dg2
þ A6

0;j;n; (32b)

M6
1;n;j ¼

A6
2;j;n

Dg2
þ

A6
1;j;n

2Dg
; (32c)

and

P6
�1;n;j ¼

B6
2;j;n

D�2
�

B6
1;j;n

2D�
; (33a)

P6
0;n;j ¼

�2B6
2;j;n

D�2
; (33b)

P6
1;n;j ¼

B6
2;j;n

D�2
þ

B6
1;j;n

2D�
: (33c)

B. Boundary conditions

Next, the boundary conditions at the edges of the

numerical domain are discretized. At the domain limit

points n ¼ 1 (bottom boundary), n ¼ Ng (top boundary),

j ¼ 1 (left boundary), and j ¼ N� (right boundary), the

finite-difference formulas in Eqs. (29a) to (30b) will contain

discrete values of w that are outside the numerical domain,

as shown in Fig. 2. There is, therefore, a need for defining

virtual points to enable the numerical scheme. The virtual

points associated with each boundary are

Bottom; Dg : wm
0;j; j ¼ 1 � � �N�

Top; Dt : wm
Ngþ1;j; j ¼ 1 � � �N�

Left; D1 : wm
n;0; n ¼ 1 � � �Ng

Right; D2 : wm
n;N�þ1; n ¼ 1 � � �Ng

:

This leads to a total number of Nbnd ¼ 2ðNg þ N�Þ unknown

virtual points, which must be expressed using the boundary

conditions. At the bottom of the domain (i.e., at g ¼ 0), the

boundary condition is given by Eq. (19) for a ground of

impedance Zg. The top and side boundaries (g ¼ gmax and

� ¼ �min; �max) are truncations of the propagation domain

and are governed by an impedance Z0 ¼ 1, since the inter-

face is made of air. We begin by dealing with the bottom

boundary condition at g ¼ 0 by inserting Eq. (29b) into the

discretized flat IBC defined in Eq. (19), leading to

�wm
2;j þ 4wm

1;j � 3wm
0;j

2Dg
¼ ik0

Zg
wm

0;j: (34)

The top boundary condition at g ¼ gmax is similarly defined

by

�wm
Ng�1;j þ 4wm

Ng;j
� 3wm

Ngþ1;j

2Dg
¼ ik0

Z0

wm
Ng;j
: (35)

The side boundary conditions will contain the same coeffi-

cients as Eq. (35). A schematic of the numerical domain and

FIG. 2. (Color online) Transversal slice of the numerical grid, delimited by

the edges Dt at the top, Dg at the bottom, D1 on the left (minimum cross-

range), and D2 on the right (maximum cross-range). The finite-difference

stencil at the point wn;j includes four neighboring points wnþ1;j; wn�1;j;
wn;j�1, and wn;jþ1. The filled dots are solution points, and the empty dots are

virtual points, at which boundary conditions are evaluated.
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finite-difference stencils at the domain boundaries are pre-

sented in Fig. 2. Rearranging the coefficients of Eqs. (34)

and (35) allows us to obtain a value for the virtual points,

which will then be inserted into the finite-difference matri-

ces. Thus, the virtual points wm
0;j; wm

Ngþ1;j; wm
n;0, and wm

n;N�þ1

are given by

wm
0;j ¼ ag

1w
m
1;j þ ag

2w
m
2;j; (36a)

wm
Ngþ1;j ¼ at

1w
m
Ng;j
þ at

2w
m
Ng�1;j; (36b)

wm
n;0 ¼ b1w

m
n;1 þ b2w

m
n;2; (36c)

wm
n;N�þ1 ¼ b1w

m
n;N�
þ b2w

m
n;N��1; (36d)

where the constant coefficients at
1; at

2; ag
1, and ag

2 are given

by

at
1 ¼ 4=ð3þ 2ik0DgÞ; (37a)

at
2 ¼ �1=ð3þ 2ik0DgÞ; (37b)

ag
1 ¼ 4Zg=ð3Zg � 2ik0DgÞ; (37c)

ag
2 ¼ �Zg=ð3Zg � 2ik0DgÞ; (37d)

and b1, b2 are given by

b1 ¼ 4=ð3þ 2ik0D�Þ; (38a)

b2 ¼ �1=ð3þ 2ik0D�Þ: (38b)

For a rigid surface, the surface impedance is Zg ¼ 1, lead-

ing to ag
1 ¼ 4=3 and ag

2 ¼ �1=3.

C. Domain truncation and absorbing layer

The numerical domain D, shown in Fig. 2, is truncated

in order to limit reflections from the boundary limits.

Following Salomons (2001), waves can be artificially

damped by introducing an artificial absorbing layer. This is

achieved by making use of a complex wavenumber,
~k ¼ keff þ ij, in an absorbing layer that is placed far from

the receiver location. The absorbing layer is placed inside

the numerical domain D just before the outer boundaries,

above the altitude ga and transversally beyond �1 and �2, as

shown in Fig. 2. The general expression of the wavenumber

k in the 3D BTPE, given in Eq. (10), can be synthesized as
~kðg; �Þ ¼ keffðgÞ þ ijsideð�Þ þ ijtopðgÞ, where the function

jside and jtop are the side and top absorbing functions. Here,

the following profiles are used:

jsideð�Þ ¼ j0 �

� � �2

�max � �2

� �2

; � � �2;

� � �1

�1 � �min

� �2

; � 	 �1;

0; �1 	 � 	 �2;

8>>>>>>><
>>>>>>>:

(39)

for the side absorbing layer, where �1, �2, �min, and �max are

the side absorbing layer limits, as shown in Fig. 2, and

jtopðgÞ ¼ j0 �
g� ga

gmax � ga

� �2

; g � ga;

0; g 	 ga;

8><
>: (40)

for the top absorbing layer, where ga and gmax are the top

absorbing layer limits, as shown in Fig. 2. In Eqs. (39) and

(40), j0 is an absorbing coefficient. For a large enough value

of the layer thickness, spurious reflections can be made neg-

ligible. Inserting Eqs. (39) and (40) into the imaginary part

of keff in the operator Z�, given by Eq. (11a), changes the

value of the coefficient A0 in Eq. (28a) to

A6
0;n;j ¼ 1þ l6

0

k2
0

~k
2

n;j � k2
0

� �
; (41)

where ~k is the complex wavenumber in the absorbing

region, defined by ~kn;j ¼ ~kðgn; �jÞ. The coefficients A6
0 now

include transversal dependency in the side absorbing regions

and must be updated for every column computation. The

value of the artificial absorbing coefficient j0 is frequency-

dependent and must be kept as small as possible so as to

limit reflection from the absorbing layer interfaces. It is,

therefore, preferable to increase the size of the absorbing

layer in both g and � directions rather than increase the arti-

ficial absorbing coefficient j0.

D. Matrix equation

The discretized marching scheme, derived in Eq. (27),

is then written in matrix form by assembling all the discre-

tized values wm
n;j, in the propagation plane nm, into a matrix

Wm as in Eq. (22). In matrix form, the numerical scheme

derived in Eq. (27) reduces to a matrix equation relating the

unknown field Wmþ1 ¼ ðwmþ1
n;j Þn;j at step m þ 1 to the solu-

tion Wm computed at the previous step. The numerical

scheme can be written in a more convenient form by consid-

ering each column of the propagation field Wm separately.

Consequently, Eq. (27) is equivalent to N� linear systems of

the form

Um ¼ fwm
n Pþn g; (42a)

Umþ1 ¼ fwmþ1
n P�n g; (42b)

M�
j Wmþ1

j þ Umþ1
j ¼Mþ

j Wm
j þ Um

j ; (42c)

where Wm
j is the j-th column of the field Wm and wm

n denotes

the n-th row of Wm. The bracket notation introduced in Eqs.

(42a) and (42b) signifies that the dummy matrices Um and

Umþ1 are computed row by row. The finite-difference matri-

ces M6
j in Eq. (42c) operate on the columns of the field

matrices and depend on the transversal index j. M6
j are tri-

diagonal, with a size Ng and given by
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M6
j ¼

E6
0;j E6

1;j

M6
�1;2;j M6

0;2;j M6
1;2;j

. .
. . .

. . .
.

. .
. . .

.
M6

1;Ng�1;j

F6
�1;j F6

0;j

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(43)

At the interior grid points, which correspond to the row

indexes n ¼ 2;…;Ng � 1, the coefficients M6
d;n;j are given in

Eqs. (32a) to (32c). At the boundary points n ¼ 1 and

n ¼ Ng, the coefficients E6 and F6 are defined by

E6
0;j ¼ M6

0;1;j þ ag
1M6
�1;1;j; (44a)

E6
1;1;j ¼ M6

1;1;j þ ag
2M6
�1;1;j; (44b)

F6
�1;j ¼ M6

�1;Ng;j
þ at

2M6
1;Ng;j

; (44c)

F6
0;j ¼ M6

0;Ng;j
þ at

1M6
1;Ng;j

; (44d)

where ag
1; ag

2; at
1, and at

2 are defined in Eqs. (37a) to (37d).

In Eqs. (42a) and (42b), the matrices P6
n operate on the rows

of the field matrices and depend on the altitude index n.

These matrices are of size N� and are given by

P6
n ¼

G6
0;n G6

1;n

P6
�1;2;n P6

0;2;n P6
1;2;n

. .
. . .

. . .
.

. .
. . .

.
P6

1;N��1;n

H6
�1;n H6

0;n

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

(45)

At the interior grid points, which correspond to the column

indexes j ¼ 2;…;N� � 1, the coefficients P6
d;n;j are defined

in Eqs. (33a) to (33c). At the boundary points n ¼ 1 and

n ¼ Ng, the coefficients M6
d;n;j are defined by

G6
0;n ¼ P6

0;1;n þ b1P6
�1;1;n; (46a)

G6
1;n ¼ P6

1;1;n þ b2P6
�1;1;n; (46b)

H6
�1;n ¼ P6

�1;N� ;n
þ b2P6

1;N� ;n
; (46c)

H6
0;n ¼ P6

0;N� ;n
þ b1P6

1;N� ;n
; (46d)

where b1 and b2 are defined in Eqs. (38a) and (38b).

E. Iterative fixed-point scheme

The linear system in Eq. (42c) is a generalized

Sylvester equation, which is a class of matrix equations of

the form

X
i

AiXBi ¼ C; (47)

for an unknown matrix X and rectangular matrices Ai; Bi,

and C. An extensive review of numerical methods for solv-

ing Eq. (47) is provided by Simoncini (2016). A particular

method known as the gradient-based iterative scheme has

been previously used by Zelley and Constantinou (1999) to

solve the 3D PE for electromagnetic propagation above

irregular terrain. The objective is to compute the unknown

field Wmþ1 at the range step nmþ1, by successive refinements

WðiÞ, where i ¼ 1; 2; 3;…, of the field Wm computed at the

previous step. This method can be viewed as a matrix for-

mulation of the Jacobi iterative scheme (Van Loan and

Golub, 1983), which is a well-known class of numerical

solvers for parabolic partial differential equations. The algo-

rithm to solve Eq. (42c) can be divided into four successive

steps:

Step 1: Starting from the solution Wm at step m, the

matrix Um ¼ fwm
n Pþn g is computed row by row. Then, the

right-hand-side of Eq. (42c) is computed for j ¼ 1;…;N�

and stored in the vectors Cm
j ,

Cm
j ¼Mþ

j Wm
j þ Um

j : (48)

Step 2: Beginning with the initial guess Wð0Þ ¼ Wm, the

solution is successively refined, and we name WðiÞ the inter-

mediate solution after i iterations. The matrix Uði�1Þ

¼ fwði�1Þ
n P�n g is computed row by row, where wði�1Þ

n is the

n-th row of the previous intermediate solution. Thus, using

Eq. (42c), the j-th column WðiÞj is computed by passing the

second term to the right-hand-side,

M�
j WðiÞj � Cm

j � Uði�1Þ
j : (49)

Step 3: The system in Eq. (49) is solved using a LU

decomposition on the tridiagonal matrix Mj, for

j ¼ 1;…;N� , which gives a solution for the columns WðiÞj .

The intermediate field WðiÞ is obtained by grouping all the

columns WðiÞj ,

WðiÞ ¼ ðWðiÞ1 ;W
ðiÞ
2 ;…;WðiÞN�

Þ:

Step 4: The intermediate solution WðiÞ is considered

acceptable if the convergence condition,

jjWðiÞ �Wði�1Þjj < �; (50)

is met, in which case Wmþ1 ¼ WðiÞ, and the algorithm

returns to Step 1 with m incremented to m þ 1. If Eq. (50) is

not met, the algorithm returns to Step 2, and the solution

WðiÞ is refined again until convergence is observed. A typical

value for the convergence threshold is � ¼ 10�4.

The stability of the iterative scheme for Eq. (42c) can

be ensured as long as the matrices M�
j and P�n verify the

condition

jjM�
j jj

2 < 2� jjP�n jj
2; (51)
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according to Xie et al. (2009). Zelley and Constantinou

(1999) pointed out that Eq. (51) can be enforced heuristi-

cally by making the norm of the matrices P�n small

enough in comparison with M�
j , which was achieved by

transferring the constant diagonal elements of P�n to M�
j .

The main advantage of this method over the ADI scheme

is a better numerical accuracy, at the expense of a slower

convergence. As shown in Fig. 3, a smaller grid size

Dn ¼ D� ¼ Dg leads to a higher number of iterations

before convergence. In practice, a good choice for Dn is

between k=8 and k=20, where k ¼ c0=f is the wave-

length, so as to ensure that the central processing unit

(CPU) time is kept under control.

IV. NUMERICAL EXAMPLES

In this section, a simple numerical example of infra-

sonic propagation is considered. While the solver developed

in Sec. III includes atmospheric refraction, numerical simu-

lations will be carried out for a homogeneous atmosphere,

with a constant sound speed of c0 ¼ 343 m/s. In order to

validate the method developed above, a boundary element

solution, implemented in COMSOL Multiphysics, is used as

a benchmark. A 2D BTPE solution is also computed in the

middle plane y ¼ 0. The propagation domain is a rectangular

waveguide of size 10� 2� 2 km,3 delimited by 0 < x < 10

km, �1 < y < 1 km, and 0 < z < 2 km. The bottom bound-

ary is a Gaussian hill, centered at x0 ¼ 5 km and y0 ¼ 0 km.

The profile function is given by

hðx; yÞ ¼ h0 exp �ðx� x0Þ2

2s2
x

 !
exp �ðy� y0Þ2

2s2
y

 !
;

(52)

where h0 ¼ 200 m and sx ¼ sy ¼ 500 m. A schematic of the

propagation domain is given in Fig. 4. The maximum slop-

ing angle of the hill is 19:6�, which is close to the theoretical

limit of the narrow-angle BTPE (Parakkal et al., 2012). A

better estimate than the pressure p for the amplitude varia-

tion and spreading of an acoustic wave is the sound pressure

level (SPL), defined by

L̂pðxÞ ¼ 10 log10

p2
rmsðxÞ
p2

ref

 !
; (53)

where prms is the root-mean-square pressure, defined as

prms ¼ jpj=
ffiffiffi
2
p

in the frequency-domain. The reference pres-

sure pref is taken one numerical step away from the source

in the x direction. The source is located at xs ¼ ð0; 0; 25Þ m

and has a strength S0 ¼ 1 Pa. Two frequencies are consid-

ered: f ¼ 1 Hz and f ¼ 5 Hz, with corresponding wave-

lengths k ¼ c0=f of 343 m and 68.6 m, respectively. At f
¼ 1 Hz, the total domain range is 29k, and the terrain

height is equal to 0:58k. At f ¼ 5 Hz, the total range

extends to 145k, and the terrain height is 2:91k. The artifi-

cial absorbing layer, defined in Sec. III C, is placed at the

top of the domain, in the region 2 < z < 3 km, and, on

each side of the propagation domain, in the regions

�2 < y < �1 km and 1 < y < 2 km.

A. COMSOL model configuration

The COMSOL model is created with BEM physics

interface in the Acoustics Module. Using the BEM interface

presents a number of advantages over the traditional Finite

Element Methods (FEM), as only the scattering objects (i.e.,

the Gaussian hill) need to be discretized with surface ele-

ments. The solution in the rest of the domain is calculated

using the Kirchhoff-Helmholtz boundary integral:

wðxÞ ¼ wiðxÞ þ
ð ð
S
ðn � rÞGðx; x0Þwðx0Þdx0; (54)

where G is the 3D Green function, wi is the incident field,

and S is the scattering surface. The BEM typically reduces

the size of the problem, since no volumetric mesh is needed.

The mesh quality is controlled through the maximum ele-

ment size, which is defined as k=8, where k is the wave-

length. For f ¼ 1 Hz, the number of degrees of freedom

(DOFs) can be reduced to about 14� 103 DOFs with the

BEM and appropriate use of symmetry, instead of 4� 106

DOFs with a standard FEM. In the simulations presented

here, a GMRES iterative solver is used with a Sparse

Approximate Inverse (SAI) preconditioning. The residual

error for convergence is set to 10�3 and the rest of the

parameters are left at their default values.

FIG. 3. (Color online) Variation of the average number of iterations Nstp as

a function of the number of steps per wavelength k=Dn, for a tolerance

� ¼ 10�4. The computations are done in free-field with f ¼ 10 Hz and

c0 ¼ 343 m/s. The number of iterations vary quadratically with k=Dn.

FIG. 4. (Color online) Schematic of the three-dimensional Gaussian hill.

The red dot represents the location of the source (at altitude 25 m).
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B. Results and discussion

The results from the 3D BTPE for the Gaussian hill are

compared against the BEM solution and the 2D BTPE. The

SPL, defined in Eq. (53), is plotted in Figs. 5–7 for f ¼ 1 Hz,

and Figs. 8–10 for f ¼ 5 Hz.

Figure 5 shows the SPL variation, for f ¼ 1 Hz, along x
in the middle plane y ¼ 0 and at several altitudes. The pres-

ence of the obstacle causes an increase in SPL upstream of

the hill (x < 5.0 km) and a shadow zone downstream of the

hill (x > 5.0 km). At z ¼ 350 m (second panel of Fig. 5), the

2D solution shows an error of about 7 dB with BEM at

5.0 km, suggesting that 3D effects do not occur only in the

shadow zone, but at the vicinity of the peak as well. Contour

plots of the SPL at the ground surface and in the middle

plane are given in Fig. 6, where it appears that the reflected

wave leads to destructive interferences at higher altitudes.

The last row of Fig. 6 shows the altitude variation of the

SPL at different ranges and indicates that the 3D BTPE cor-

rectly estimates the intensity of the scattered field close to

FIG. 6. (Color online) 3D BTPE solution of the propagation above the

Gaussian hill at f ¼ 1 Hz. The first row shows the SPL at the ground surface.

The second row shows the SPL in the middle plane y ¼ 0. The third row

shows the SPL along the lines x ¼ 3, 7, and 10 km in the middle plane.

FIG. 5. (Color online) Variation of the SPL with range in the middle plane

and for f ¼ 1 Hz, taken along the ground surface (first row), the line

z¼ 350 m (second row), and z ¼ 1 km (third row).

FIG. 7. (Color online) Transversal variation of the SPL at x ¼ 7 km and f
¼ 1 Hz. The first row shows the contour plot of the 3D BTPE solution in

the plane x ¼ 7 km. The second row shows the SPL along the transversal

line z ¼ 0 at x ¼ 7 km.

FIG. 8. (Color online) Variation of the SPL with range in the middle

plane and for f ¼ 5 Hz, taken along the ground surface (first row), the line

z ¼ 350 m (second row) and z ¼ 1 km (third row).
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the ground. The transversal variation of the SPL at

x ¼ 7.0 km (i.e., just downstream of the hill) is shown in

Fig. 7. Results show that the 3D BTPE matches the BEM

closely. At this frequency, the effect of the hill on the acous-

tic wave amplitude is not significant, with both the 2D and

3D solutions very close to the BEM.

At f ¼ 5 Hz, the ratio between the terrain height and the

wavelength h0=k is larger than 1, which leads to a greater

interaction between the obstacle and the incident wave. The

SPL variation along x is shown in Fig. 8. The important dis-

crepancy between the 3D BTPE and the BEM at short

ranges is due to the paraxial approximation. In the far-field,

the 3D BTPE agrees with the BEM very well, with a differ-

ence of 61 dB. Figure 9 shows the contour plot of the SPL

at the ground surface and in the middle plane, as well as the

variation of the SPL with altitude at different ranges. The

contour plot in the middle plane shows a large number of

interferences at higher altitude and a strong pressure

decrease in the shadow zone. The 3D BTPE performs very

well and captures 3D effects correctly. This is specifically

visible in the last two plots of Fig. 9 (for x ¼ 7 km and x
¼ 10 km), where the 2D BTPE fails to properly account for

the pressure increase in the shadow zone near the ground, by

a margin of –4 dB. This pressure increase is explained by

the presence of out-of-plane scattering due to the transversal

variation of the hill. The transversal variation of the SPL at

x ¼ 7.0 km is shown in Fig. 10. Again, the 3D BTPE per-

forms well and matches the BEM within a margin of 1 dB.

The presence of the pressure lobe in Fig. 9 is the result

of destructive interference between the incident and

reflected waves. This phenomenon is known as the Lloyd’s

mirror pattern and occurs when an acoustic source is placed

close to, but not at, an impedance ground surface (Jensen

et al., 2011). The theory shows that the number of such

interferences increases with frequency, which is why the

pressure lobe is not observed at f ¼ 1 Hz (cf. Figure 6).

Overall, results show a good agreement between the 3D

PE and the BEM method, with a discrepancy that is smaller

than 1 dB close to the ground, for both frequencies. The

important discrepancies in the near-field and at higher alti-

tudes are due to the paraxial approximation, constraining the

validity of the PE solution to small propagation angles. In

the far-field (at x ¼ 10 km), the 3D BTPE matches the BEM

almost exactly, and comparisons with the 2D solution high-

light the presence of 3D effects at f ¼ 5 Hz, which cause a

difference of about 2 dB downstream of the obstacle, as

shown in Fig. 10. The computational time of the 3D BTPE

is approximately 50 times faster than the BEM simulations,

with a total CPU time of around 5 min for f ¼ 5 Hz against

4 h and 20 min for the COMSOL model. At f ¼ 5Hz, the

numerical domain has a cross-section Ng � N� of 437 � 583

grid points and a total range of 1450 grid points. This results

in a total of 369� 106 DOFs on the whole numerical

domain. The practical limit of the iterative fixed point

scheme is, for Ng and N� , exceeding values of around 5000,

above which the marching scheme becomes excessively

slow (but still faster than BEM), with no impact on the con-

vergence rate. For the Gaussian hill problem presented here,

where the wave propagates over 10 km, computational times

will start to exceed 24 h for f � 50 Hz.

V. CONCLUSIONS

In this paper, the Cartesian 3D PE has been extended to

propagation above irregular boundaries. The method was

derived by applying the Beilis-Tappert transform to the

narrow-angle 3D PE in a layered moving atmosphere. The

analysis carried out shows that the resulting equation, which is

a 3D version of the Beilis-Tappert PE, can be efficiently solved

FIG. 9. (Color online) 3D BTPE solution of the propagation above the

Gaussian hill at f ¼ 5 Hz. The first row shows the SPL at the ground surface.

The second row shows the SPL in the middle plane y ¼ 0. The third row

shows the comparison of the SPL along the lines x ¼ 3, 7, and 10 km in the

middle plane.

FIG. 10. (Color online) Transversal variation of the SPL at x ¼ 7 km and f
¼ 5 Hz. The first row shows the contour plot of the 3D BTPE solution in

the plane x ¼ 7 km. The second row shows the SPL along the transversal

line z ¼ 0 at x ¼ 7 km.

J. Acoust. Soc. Am. 148 (2), August 2020 Khodr et al. 1099

https://doi.org/10.1121/10.0001766

https://doi.org/10.1121/10.0001766


with an iterative fixed-point algorithm. As in 2D, the paraxial

approximation inherent to the narrow-angle PE limits the

model to irregular boundaries with slopes of about 20�. While

this limitation still covers a large amount of practical cases,

extending the method to wide-angle propagation with a non-

flat impedance boundary condition is highly desirable.

Comparison against boundary elements shows a good

agreement at low frequencies in homogeneous atmosphere.

Furthermore, it has been shown that 3D effects occur in the

shadow zone as a result of transversal scattering from the

obstacle, resulting in an increase of nearly 2 dB compared to

the 2D PE. This approach opens new possibilities for the

modeling of long-range acoustic propagation in transversally

varying waveguides, as the iterative fixed-point methods can

be used on any formulation of the 3D PE, leading to alternative

solutions to the traditional ADI scheme. The method developed

is capable of modeling low-frequency waves interacting with

irregular terrain, as well as infrasound propagating over large

distances in a moving inhomogeneous media.
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