
A higher-order split-step Fourier
parabolic-equation sound propagation

solution scheme
Ying-Tsong Lina) and Timothy F. Duda

Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543

ytlin@whoi.edu, tduda@whoi.edu

Abstract: A three-dimensional Cartesian parabolic-equation model
with a higher-order approximation to the square-root Helmholtz opera-
tor is presented for simulating underwater sound propagation in ocean
waveguides. The higher-order approximation includes cross terms with
the free-space square-root Helmholtz operator and the medium phase
speed anomaly. It can be implemented with a split-step Fourier algo-
rithm to solve for sound pressure in the model. Two idealized ocean
waveguide examples are presented to demonstrate the performance of
this numerical technique.
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1. Introduction

The parabolic-equation (PE) approximation, first introduced by Tappert (1974b), has
been shown to be an effective numerical technique for modeling underwater sound
propagation in the ocean. This technique transforms the Helmholtz wave equation into
a one-way wave equation that can be solved by a variety of marching algorithms with
the range being the evolution variable. Among those algorithms, the split-step Fourier
method (Tappert, 1974a) is most efficient for three-dimensional (3D) cases, because
one can employ the fast Fourier transform to calculate the second-order spatial deriva-
tives of the pressure field. In this method, one complete marching step of the solution
is split into two sub-steps to sequentially, not simultaneously, solve for free space prop-
agation and phase anomaly. Because of the sequential splitting, errors can arise from
the neglected cross terms. In this paper, a higher-order split-step Fourier algorithm is
proposed to reduce such errors, and their performance is demonstrated by solving two
idealized ocean waveguide problems.

The one-way parabolic wave equation can be written as the following in terms of
demodulated sound pressure u(x, y, z) by removing the baseline phase according to the
reference wavenumber k0, i.e., u(x, y, z)¼ p(x, y, z) exp(�ik0x), where p is sound pressure:

@

@x
uðx; y; zÞ ¼ ik0 �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðx; y; zÞ þ k�2

0 r2
?

q� �
uðx; y; zÞ; (1)

where the Cartesian coordinate system is chosen to obtain a uniform resolution
throughout the domain. In Eq. (1), n is the index of refraction with respect to k0, and
r2
? ¼ ð@2=@y2 þ @2=@z2Þ is the two-dimensional (2D) Laplacian. To solve Eq. (1), the

square-root Helmholtz operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ k�2

0 r2
?

q
will be approximated, and the approxi-

mation error will vary with azimuth angles. Our goal is to develop a higher-order
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approximation with a large valid angle so that the solution is accurate over a large do-
main. The Cartesian PE solution marches forward along a single direction, and the x
axis of the coordinate system is aligned with that.

A brief review of the split-step Fourier PE theory is provided in the following.
Tappert (1974b) applied the following linear approximation to the square-root Helm-
holtz operator for the split- step Fourier method to work:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eþ l

p
ffi 1þ 1

2
eþ 1

2
l ¼ Q1; (2)

where e¼ n2 � 1 and l¼ k�2
0 r2

?. It is shown that Tappert’s approximation, denoted
by Q1, is valid within 610� around the PE marching direction (Jensen et al., 1994). A
3D implementation of Q1 was performed by Martin and Flatté (1988) for optical
waves propagating through random media. Another approximation with a valid angle
range significantly greater than Tappert’s was proposed by Feit and Fleck (1978), i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eþ l
p

ffi �1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
¼ Q2: (3)

This approximation, denoted by Q2, can also work with the split-step Fourier method,
and it was first used by Thomson and Chapman (1983) for a wide angle 2D PE model in
underwater acoustics. 3D implementations with Cartesian coordinates were made by Feit
and Fleck (1978) in optics and by Duda (2006) in underwater acoustics. An approach
employing a pressure variable p=

ffiffiffi
q
p

with interface smoothing was proposed by Tappert
(1977) to handle density (q) discontinuity in split-step Fourier PE models. The effective
index of refraction for the density-reduced pressure is shown as follows (Bergman, 1946):

~n2 ¼ n2 þ 1
2k2

0

1
q
r2q� 3

2q2 ðrqÞ2
� �

; (4)

from which one can see that the anomaly of ~n depends strongly on the sharpness of the
interface smoothing and the sound frequency. Note that k0¼ 2pf/c0, where f is the frequency
and c0 is the reference sound speed. In many shallow water problems of low frequency
sound propagation, the anomaly of ~n can be large when a sharp interface is needed. This
causes the use of Q1 or Q2 to produce significant errors. An improved approximation to the
square-root Helmholtz operator is proposed in Sec. 2 to handle greater refractive index
anomalies.

2. Higher-order split-step Fourier algorithm

The operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eþ l
p

can in fact be approximated into the following second-order
Taylor series around

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

¼ 1 and
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

¼ 1 to include two cross terms with e and l,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eþ l

p
ffi

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

þ �1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p� �
� 1

2
�1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p� �

�1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p� �
� 1

2
�1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p� �
�1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p� �

¼ Q3; (5)

which is the new approximation used in this paper, denoted by Q3. This approximation
will reduce to Q2 if the cross terms with e and l are neglected, and it will reduce to the
higher-order approximation used by Yevick and Thomson (1994) when the operatorsffiffiffiffiffiffiffiffiffiffiffi

1þ e
p

and
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

in the cross terms are approximated to 1 þ e/2 and 1 þ l/2, respec-
tively. Here we follow Feit and Fleck (1978) to examine the approximation error
defined as E3 ¼ ðQ3Þ2 � ðk�2

0 r2
? þ n2Þ. For 3D sound waves with a single wavenumber

component, p¼ exp(i~k �~x), the error bound of E3 is found to be
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jE3ðdn; cÞj � 2jD njj cos c� 1j ðjD nj þ j cos c� 1jÞ; (6)

where Dn is the refractive index anomaly from unity, and c is the angle between the
wavenumber vector ~k and the PE marching direction. Figure 1 shows a comparison to
the error bounds of the other two approximations Q1 and Q2 found by Thomson and
Chapman (1983), and it is clear that Q3 can handle larger propagation angles and
greater anomalies.

The finite-difference solution of the parabolic wave equation (1) using the
approximation Q3 is uðxþ DxÞ ¼ ed½LþN�ðNLþLNÞ=2�uðxÞ þ ~E , where d¼ ik0Dx, and
two new notations are defined for operators N ¼�1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

¼ n � 1 and L¼�1

þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

¼�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k�2

0 r2
?

q
. In the PE solution, the error ~E is due to an assumption

that the environment does not vary in each marching step from x to x þ Dx. Using a
Taylor series expansion, we can find ~E ¼ 0:5ðDxÞ2ik0½N x � ðN xL þ LN xÞ=2�uðxÞ
þO

�
ðDxÞ3

�
, where N x is the derivative of N with respect to x, and this error ~E will

entirely vanish when N x ¼ 0, leaving only approximation errors from Q3. To implement
the PE solution, we actually use the following exponential operator splitting:

ed½LþN�ð1=2ÞðNLþLNÞ� ¼ edðL=2ÞedN e�ðd=2ÞðNLþLNÞedðL=2Þ þd2

4
[N ;ðNLþLNÞ]þOðd3Þ; (7)

where the square brackets denote [A;B] ¼ AB � BA, which is a measure of non-
commutativity between A and B. Although this operator splitting is second order in d,
its error term has only the derivative operator L to its first power, which makes this
method robust. Note that the non-commutative error is proportional to the gradient of
the refractive index, so it requires interface smoothing and small marching steps to
reduce the error.

To solve the cross operator with N and L in Eq. (7), we expand it into a
Taylor series with a small d,

e�ðd=2ÞðNLþLNÞ ¼ 1þ
X1
m¼1

1
m!
� d

2
ðNL þ LNÞ

� �m

; (8)

Fig. 1. Comparisons of the PE approximation errors. Thomson and Chapman (1983) showed that Tappert’s and
Feit and Fleck’s approximations, Q1 and Q2, have the following error bounds, jE1ðD n; cÞj � ½jD njð2þ jdnjÞ
þsin2 c�2=4, and jE2ðDn; cÞj � 2jDnjjcos c� 1j, respectively.
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which may be calculated to a limited order M depending on the level of precision
required. Then, the PE solution can be determined in the following steps:

D u1 ¼ �
d
2
ðNL þ LNÞedðL=2ÞuðxÞ; (9a)

D um ¼ �
d

2m
ðNL þ LNÞ Dum�1 for m > 1; (9b)

uðxþ D xÞ ¼ edðL=2ÞedN
XM
m¼1

D um þ edðL=2ÞuðxÞ
" #

; (9c)

where the cross-term corrections to u(x) are first calculated with Eqs. (9a) and (9b),
and they are used in Eq. (9c) to determine u(x þ Dx). The number of the iterations in
Eq. (9c) depends on the required precision. In the numerical examples shown in the
following, jDumj=juj always converges to 1� 10�6 within five iterations or less. Finally,
since both the differential operators L and edL can be implemented with Fourier trans-
forms, this higher-order PE method shares the same advantage as the original split-
step Fourier PE method in fast computation of the 2D second-order derivatives. Imple-
mentation of L and edL with Fourier transforms are shown in the following:

LuðxÞ ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k�2

0 r2
?

q	 

uðxÞ ¼ F�1 �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðj~k?j=k0Þ2

q
FfuðxÞg

� �
; (10a)

edLuðxÞ ¼ eiDxð�k0þ
ffiffiffiffiffiffiffiffiffiffiffi
k2

0þr
2
?

p
ÞuðxÞ ¼ F�1 eiDxð�k0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0�j~k?j
2

p
ÞFfuðxÞg

� �
; (10b)

where j~k?j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y þ k2
z

q
is the magnitude of the transverse wavenumber vector.

When implementing the higher-order split-step Fourier PE model, an
approach using artificial absorption layers (Jensen et al., 1994) can be employed to imi-
tate the radiation boundary condition, and the PE solution within the artificial layers
should be discarded. Note that the absorption coefficients of the artificial layers should
only be added to the operator edN in Eq. (9c). Also, interface smoothing is needed to
reduce the anomaly of ~n in Eq. (4) as well as the operator splitting error in Eq. (7).
A hyperbolic tangent smoothing procedure (Tappert, 1977) is suggested here, and the
formula for smoothing the discontinuity of density is

qðzÞ ¼ qW þ 0:5ðqB � qW Þ 1þ tanh
z�D

2d

	 
� �
; (11)

where qW and qB are the water and bottom densities, respectively, D is water depth,
and d is the one-side halfway width for the smoothing. It may require a convergence
test to determine the smoothing width d. We can use Eq. (4) to check the anomaly of
~n for a given smoothing width and examine the accuracy of the approximation Q3. We
then determine Dx to reduce the non-commutative error in Eq. (7) and ensure the con-
vergence of Eq. (8). It will be shown that Q3 can in fact handle a smoothed density
interface with the width d down to the order of 1/15th of the acoustic wavelength, and
so the model error associated with the interface smoothing becomes insignificant.

3. Numerical examples

The first example is the 2D Pekeris waveguide problem with a constant water depth
200 m and a 75 Hz point source located at depth 100 m. The water column is homoge-
neous with sound speed 1500 m/s, density 1 g/cm3, and no medium absorption. The
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bottom is also homogeneous with sound speed 1700 m/s, density 1.5 g/cm3, and me-
dium absorption 0.5 dB/wavelength. In the PE calculation, a wide angle starter (Thom-
son and Bohun, 1988) is used to simulate the point source. It is also found that the PE
solution with the new approximation Q3 is not so sensitive to the reference sound
speed c0, and the example shown here uses c0¼ 1450 m/s.

This 2D Pekeris waveguide example is to demonstrate that the higher-order
split-step Fourier PE can handle a sharp interface, and it is found that the density
smoothing width d can go down to 1.25 m, which is 1/15th of the acoustic wavelength
in the water, without suffering from large approximation errors. There is no need for
sound speed smoothing at this frequency. The PE solution converges when the depth
grid size Dz is 1 m and the marching step Dx is 1.25 m. The transmission loss (TL) so-
lution from the higher-order PE model is compared to the reference normal mode solu-
tion, and the agreement is very good as shown in Fig. 2. On the other hand, the regu-
lar split-step PE model employing Q2 without considering the cross terms with e and l
is less accurate because it cannot handle the sharp interface given by the density
smoothing procedure in the current case.

The second example tests how the new PE model handles the horizontal
refraction. An idealized wedge problem is considered, and its geometry is shown in
Fig. 3(a). The slope angle is 5�, and the medium properties follow the Pekeris wave-
guide example. A 75 Hz point source is located 2 km away from the wedge apex at
100 m depth. In the PE calculation, a 3D wide angle starter generalized from a 2D
starter by Thomson and Bohun (1988) is used. The cross-range grid size Dy is 1.5 m,
and the depth grid size Dz is 1 m. It is found that the PE model can handle density
interface smoothing with the width d¼ 1.25 m, as in the Pekeris waveguide example,
and its solution converges when the marching step Dx is 1.25 m.

The higher-order PE TL solution on the horizontal x–y plane at z¼ 30 m is
shown in Fig. 3(b), and the interference structure caused by the horizontal refraction
of normal modes is observable. The caustics of the first five vertical modes are calcu-
lated using a normal mode approach (Buckingham, 1987) and superimposed on the
TL contours in Fig. 3(b). It is shown that the outermost border of the PE TL solution
follows the first modal caustic predicted by the modal approach. Also, the vertical in-
terference structure shown in Fig. 3(c) confirms that the cutoff ranges of modes 2–5 at
y¼ 0 seen in the PE solution agree with the theoretical locations of the modal caustics.
A method of images by Deane and Buckingham (1993) is used here to produce a refer-
ence solution, and it verifies the accuracy of the higher-order PE solution, see
Fig. 3(d). The regular split-step Fourier (SSF) PE solution obtained from Q2, which
neglects the cross terms, is also shown in Fig. 3(d) for a comparison. Because the regu-
lar SSF method cannot handle the sharp interface smoothing (d¼ 1.25 m) applied here,

Fig. 2. (Color online) A model comparison for the Pekeris waveguide example. The higher-order SSF PE solu-
tion agrees with the reference normal modal solution very well, but not the regular SSF PE solution.
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its solution contains significant phase errors and starts deviating from the reference so-
lution at about x¼ 5 km. On the other hand, the higher-order SSF method produces a
solution matching with the image solution very well.

4. Summary

An improved SSF PE model with Cartesian coordinates is presented in this paper, and
it employs a higher-order approximation to the square-root Helmholtz operator

Fig. 3. (Color online) (a) Geometry of the idealized wedge example. (b) TL contours on the horizontal x–y
plane at depth 30 m. (c) TL contours on the vertical x–z plane along y¼ 0. The solid lines in (b) are the hyper-
bolic loci of the first five modal caustics predicted by a modal theory (Buckingham, 1987), and the dashed lines
in (c) denote the theoretical cutoff locations of modes 2–5. (d) Excellent agreement between the higher-order PE
and a method of images.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ k�2

0 r2
?

q
. Since two cross terms with n and r2

? are included, this PE model can

handle larger propagation angles and greater refractive index anomalies comparing to
the regular SSF PE.

The advantage of the presented higher-order SSF PE is appreciable when
applying to 3D problems, because it utilizes the efficient fast Fourier transform to
implement the Laplacian, 2D second-order spatial derivatives. Also, because the Lapla-
cian is not split, the horizontal refraction is handled in the same order as the vertical
refraction. The small marching steps might prevent the current theory from routine
usage, but this higher-order SSF PE does provide a means to quantify the errors that
the regular SSF PE will produce. Solving the PE solution with the cross terms in larger
marching steps is proposed for future research.
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