221 research outputs found

    Acoustic energy transfer by friction induced vibrations

    Get PDF
    Friction-induced vibrations are often investigated for their unwanted effects, such as surface wear and dynamic instabilities. This article focuses on the exploitation of friction-induced vibrations to transfer the energy between different acoustic fields by an interface under frictional contact. One of the main possible applications is the use of the generated acoustic field for passive structural health monitoring (SHM). A mechanical device (secondary acoustic source, SAS), able to perform the energy transfer, is here tested on a simplified benchmark. The energy transfer is obtained between two vibrational fields: a primary field, which is the ambient acoustic field on the structure and is generated by a known source, and a secondary field with a different frequency content produced with the developed device by friction-induced vibrations. The test bench analyzed in this work is composed by a main structure, which is excited by the primary (ambient) acoustic field, and the SAS, able to absorb part of the acoustic energy of the primary field and radiate it within the secondary acoustic field. The device is composed by a main resonator, excited by the primary acoustic field, in frictional contact with a secondary resonator to provide a broadband secondary acoustic field. The objective of the article is to analyze and estimate the power flows from the main structure to the SAS and vice versa, within the two acoustic fields

    Tactile perception by friction induced vibrations

    Get PDF
    Cataloged from PDF version of article.When a finger moves to scan the surface of an object (haptic sensing), the sliding contact generates vibrations that propagate in the finger skin activating the receptors (mechanoreceptors) located in the skin, allowing the brain to identify objects and perceive information about their properties. The information about the surface of the object is transmitted through vibrations induced by friction between the skin and the object scanned by the fingertip. The mechanoreceptors transduce the stress state into electrical impulses that are conveyed to the brain. A clear understanding of the mechanisms of the tactile sensing is fundamental to numerous applications, like the development of artificial tactile sensors for intelligent prostheses or robotic assistants, and in ergonomics. While the correlation between surface roughness and tactile sensation has already been reported in literature, the vibration spectra induced by the finger-surface scanning and the consequent activation of the mechanoreceptors on the skin have received less attention. In this paper, frequency analysis of signals characterizing surface scanning is carried out to investigate the vibration spectrum measured on the finger and to highlight the changes shown in the vibration spectra as a function of characteristic contact parameters such as scanning speed, roughness and surface texture. An experimental set-up is developed to recover the vibration dynamics by detecting the contact force and the induced vibrations; the bench test has been designed to guarantee reproducibility of measurements at the low amplitude of the vibrations of interest, and to perform measurements without introducing external noise. Two different perception mechanisms, as a function of the roughness wavelength, have been pointed out. The spectrum of vibration obtained by scanning textiles has been investigated. (C) 2011 Elsevier Ltd. All rights reserved

    Radiation Hardness Tests Of Piezoelectric Actuators With Fast Neutrons At Liquid Helium Temperature

    Get PDF
    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators (~24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: ~20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T~4.2 K), was proposed for the working package WP#8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orléans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35µA) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose (~20%): a neutrons fluence of more than 1014 n/cm2 is achieved in ~20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T~4.2 K. This new apparatus allows on-line automatic measurements of actuators characteristics and the cryogenic parameters. Further, the test-cell and actuators are equipped with high purity Ni foils for measuring the total neutrons dose by an activation method. In this report, the details of the irradiation test facility will be described then the experimental data will be analyzed and discussed

    Electromechanical, Thermal Properties And Radiation Hardness Tests Of Piezoelectric Actuators At Low Temperature

    Get PDF
    IPN Orsay participates, in the frame of the CARE project activities supported by EU, to the development of a fast cold tuning system for SRF cavities. The main task of IPN is the full characterization of piezoelectric actuators at low temperature T, and the study of their behaviour when subjected to fast neutrons radiation at T=4.2 K. In order to compare the performance of various industrial piezoelectric actuators, a new apparatus was developed and successfully used for measuring their electromechanical and thermal properties for T in the range 1.8 K-300 K. Different parameters were investigated as function of T: piezoelectric constant, dielectric and thermal properties including heating ΔT due to dielectric losses vs. modulating voltage Vmod and frequency f. We observed a decrease of the maximum displacement ΔX of the actuators tested from ΔX ~40μm @ 300K down to 1.8μm-3.5 μm @ 1.8K, depending on both material and fabrication process of the piezostacks. Besides, both material and fabrication process have a strong influence on the shape of the characteristics ΔX vs. T dependence. Finally a dedicated facility located at CERI institute (Orléans, France) for radiation hardness tests of actuators with fast neutrons at T=4.2 K was developed and the first beam tests results are summarized

    Somatic embryogenesis and plant regeneration of Vitis vinifera cultivars 'Macabeo' and 'Tempranillo'

    Get PDF
    Different experimental conditions have been compared to achieve a high efficiency in embryogenic calli initiation from 'Macabeo' and 'Tempranillo' anthers. Specifically, two stages of anther development were tested (corresponding to tetrad cells or uninucleate pollen), and direct culture of anthers was compared to culture after a cold treatment of inflorescences (4 °C during 48 h). In addition, two induction media (C1 P and B2), mainly differing by microelement and cytokinin levels, were evaluated. Experiment repeatability was also examined with a repetition of anther culture one week later. Callus initiation was similar in all media and treatments for both cultivars, usually starting from the anther filament. A simple protocol for efficient induction of embryogenesis in 'Macabeo' and 'Tempranillo' consisted in:selecting the first inflorescence from hardwood cutting,excising anthers at uninucleate pollen stage without cold treatment of the inflorescences,incubating anthers on C1 P medium.The procedure used for embryo germination and plant regeneration, allowed to obtain a conversion rate up to 75 % in 'Macabeo' and 60 % in 'Tempranillo'. The protocol proposed represents the first regeneration system developed for the Spanish cultivars 'Macabeo' and 'Tempranillo'.

    Cryopreservation and cryotherapy of grapevine (Vitis vinifera L.)

    Get PDF
    This study aimed at testing the efficiency of a droplet-vitrification cryopreservation protocol in eliminating selected grapevine viruses. The cryopreservation protocol led to approximately 50 % recovery with cultivar 'Portan' and five international cultivars tested, but very low recovery was noted with Croatian cultivars. GFLV and GLRaV-3, two (economically important grapevine) viruses were eliminated in a high percentage (up to 100 %) of plants regenerated from cryopreserved shoot tips. Virus sanitation was observed as well in samples before liquid nitrogen exposure. Genetic stability of plants regenerated after cryopreservation was studied using AFLP markers. Polymorphic fragments were observed in non-cryopreserved and cryopreserved samples treated with PVS2 solution, the number of which increased with increasing durations of exposure to PVS2 solution

    Understanding the Distributions of Benthic Foraminifera in the Adriatic Sea with Gradient Forest and Structural Equation Models

    Get PDF
    Abstract: In the last three decades, benthic foraminiferal ecology has been intensively investigated to improve the potential application of these marine organisms as proxies of the effects of climate change and other global change phenomena. It is still challenging to define the most important factors affecting foraminiferal communities and derived faunistic parameters. In this study, we examined the abiotic-biotic relationships of foraminiferal communities in the central-southern area of the Adriatic Sea using modern machine learning techniques. We combined gradient forest (Gf) and structural equation modeling (SEM) to test hypotheses about determinants of benthic foraminiferal assemblages. These approaches helped determine the relative effect of sizes of different environmental variables responsible for shaping living foraminiferal distributions. Four major faunal turnovers (at 13–28 m, 29–58 m, 59–215 m, and >215 m) were identified along a large bathymetric gradient (13–703 m water depth) that reflected the classical bathymetric distribution of benthic communities. Sand and organic matter (OM) contents were identified as the most relevant factors influencing the distribution of foraminifera either along the entire depth gradient or at selected bathymetric ranges. The SEM supported causal hypotheses that focused the factors that shaped assemblages at each bathymetric range, and the most notable causal relationships were direct effects of depth and indirect effects of the Gf-identified environmental parameters (i.e., sand, pollution load Index–PLI, organic matter–OM and total nitrogen–N) on foraminifera infauna and diversity. These results are relevant to understanding the basic ecology and conservation of foraminiferal communitie

    Characteristics of air showers created by extremely high energy gamma-rays

    Get PDF
    The technique of adjoint cascade equations has been applied to calculate the properties of extremely high energy gamma-rays in the energy range 10^18--10^22 eV with taking into account the LPM effect and interactions of gamma-rays with the geomagnetic field. Such characteristics are analysed as the electron and muon contents at the observation level, the electron cascade curves, the lateral distribution functions of photoproduced muons.Comment: 36 pages, 19 figures, submitted to J.Phys.G: Nucl.Part.Phy
    • …
    corecore