161 research outputs found

    Impact of cooking methods of red-skinned onion on metabolic transformation of phenolic compounds and gut microbiota changes

    Get PDF
    Herein, we investigated the stability and bioaccessibility of phenolics in differently cooked red-skinned onion (RSO) and consequently their impact on the gut microbiota and metabolism of phenolics. In fact, the different processes used to cook vegetables can modify and re-arrange the molecular profiles of bioactive compounds, such as phenolics in phenolic-rich vegetables, such as RSO. Fried and grilled RSO were compared to raw RSO and a blank control and subjected to oro-gastro-intestinal digestion and subsequent colonic fermentation. For upper gut digestion, the INFOGEST protocol was used, and for lower gut fermentation, a short-term batch model, namely, MICODE (multi-unit in vitro colon gut model), was employed. During the process, phenolic compound profile (through high-resolution mass spectrometry) and colon microbiomics (qPCR of 14 core taxa) analyses were performed. According to the results, the degradation driven by the colon microbiota of RSO flavonols resulted in the accumulation of three main metabolites, i.e., 3-(3 '-hydroxyphenyl)propanoic acid, 3-(3 '-hydroxyphenyl)acetic acid and 3-(3 ',4 '-dihydroxyphenyl)acetic acid. Also, colonic fermentation of raw onions resulted in a substantial increase in beneficial taxa, which was larger compared to the heat-treated onions, particularly Lactobacillales and beneficial clostridia. Also, a higher level of inhibition of opportunistic bacteria was seen for the raw onion samples, namely, Clostridium perfringens group and Escherichia coli. Thus, our results showed that RSO, and especially the raw one, is an excellent dietary source of flavonols that are strongly metabolized by gut bacteria and can positively modulate the gut microbiota. Although additional in vivo studies are necessary, this work is one of the first to explore how RSO processed with different cooking methods can differently impact the phenolic metabolism and microbiota composition in the large intestine of humans, fine-tuning the antioxidant nature of foods

    Effects of the replacement of nitrates/nitrites in salami by plant extracts on colon microbiota

    Get PDF
    Salami is a cured sausage consisting of fermented and air-dried meat obtained from a mixture of meat and fat with spices and other ingredients. Excessive processed meat consumption is negatively considered because of its high fat and salt contents and few bioactive molecules. Notwithstanding, salami is largely consumed, and there is a strong interest to produce better and healthier products by substituting nitrites and nitrates with natural extracts. This work produced four different salami, two controls including nitrates and two alternative preparations where nitrates were substituted with plant extract and ascorbic acid. The products were in vitro digested with the INFOGEST protocol to simulate the oro-gastro-duodenal phase and in vitro fermented with MICODE model to simulate the colon phase. Samples were analyzed by microbiomics and metabolomics approaches to study the changes in bacterial populations and in metabolites production. The results showed that the clean-label formulations promote a general eubiosis of the intestinal microbiota, including favorable F/B ratio, the proliferation of beneficial microbial taxa (Bifidobacteriaceae), and reduction of negative microbial populations (Enterobacteriaceae). Volatilome analysis highlighted a marked production of beneficial molecules, including acetate, propionate and butyrate, and a reduction in host negative molecules such as phenol and p-cresol. Our results tell that the plant extracts could be used to replace nitrates, because the features obtained are comparable to those of controls. This work could represent an encouraging starting point for the processed meat industry for the development of clean-label formulations aimed at reducing the negative impact of these products on consumers

    The Immune Response to Tumors as a Tool toward Immunotherapy

    Get PDF
    Until recently cancer medical therapy was limited to chemotherapy that could not differentiate cancer cells from normal cells. More recently with the remarkable mushroom of immunology, newer tools became available, resulting in the novel possibility to attack cancer with the specificity of the immune system. Herein we will review some of the recent achievement of immunotherapy in such aggressive cancers as melanoma, prostatic cancer, colorectal carcinoma, and hematologic malignancies. Immunotherapy of tumors has developed several techniques: immune cell transfer, vaccines, immunobiological molecules such as monoclonal antibodies that improve the immune responses to tumors. This can be achieved by blocking pathways limiting the immune response, such as CTLA-4 or Tregs. Immunotherapy may also use cytokines especially proinflammatory cytokines to enhance the activity of cytotoxic T cells (CTLs) derived from tumor infiltrating lymphocytes (TILs). The role of newly discovered cytokines remains to be investigated. Alternatively, an other mechanism consists in enhancing the expression of TAAs on tumor cells. Finally, monoclonal antibodies may be used to target oncogenes

    Increased frequency of activated CD8+ T cell effectors in patients with psoriatic arthritis

    Get PDF
    The aim of this study is to identify subsets of T cells differentially represented in the circulation of patients with psoriatic arthritis and to evaluate the possibility that they can recirculate between peripheral blood and the inflamed joints. We analyzed the phenotype and cytokine expression in circulating CD8+ and CD4+ T cells in 69 subjects: 28 with cutaneous psoriasis, 15 patients with psoriatic arthritis, and 26 healthy subjects. In the circulation, the percentage of each subset was compared among the groups and correlation was calculated with the serum concentration of C-reactive protein. To investigate the migration of T cells towards the inflamed joints, we performed a transwell migration assay towards patient serum and synovial fluid. In selected patients we analyzed in parallel T cells from peripheral blood and from synovial fluid. In the circulation, we found increased percentage of CD8+ CCR6+ T cell effectors expressing CD69 and of IL-17-producing T cells in patients with psoriatic arthritis. CD8+ effector/effector memory T cells showed increased migration towards synovial fluid. Finally, in synovial fluid we found accumulation of CXCR3+ CD8+ T cells and CD69+ cells. CD4+ T cells in the two compartments shared many similarities with CD8+ T cells. The results indicate a role for memory T cell effectors in systemic and joint manifestations of psoriatic arthritis

    Atrophin proteins: an overview of a new class of nuclear receptor corepressors

    Get PDF
    The normal development and physiological functions of multicellular organisms are regulated by complex gene transcriptional networks that include myriad transcription factors, their associating coregulators, and multiple chromatin-modifying factors. Aberrant gene transcriptional regulation resulting from mutations among these elements often leads to developmental defects and diseases. This review article concentrates on the Atrophin family proteins, including vertebrate Atrophin-1 (ATN1), vertebrate arginine-glutamic acid dipeptide repeats protein (RERE), and Drosophila Atrophin (Atro), which we recently identified as nuclear receptor corepressors. Disruption of Atrophin-mediated pathways causes multiple developmental defects in mouse, zebrafish, and Drosophila, while an aberrant form of ATN1 and altered expression levels of RERE are associated with neurodegenerative disease and cancer in humans, respectively. We here provide an overview of current knowledge about these Atrophin proteins. We hope that this information on Atrophin proteins may help stimulate fresh ideas about how this newly identified class of nuclear receptor corepressors aids specific nuclear receptors and other transcriptional factors in regulating gene transcription, manifesting physiological effects, and causing diseases

    Inhibition of the Nicotinic Acetylcholine Receptors by Cobra Venom α-Neurotoxins: Is There a Perspective in Lung Cancer Treatment?

    Get PDF
    Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted, we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated

    Budget impact analysis of medicines : updated systematic review and implications

    Get PDF
    This evaluation determines whether published studies to date meet the key characteristics identified for budget impact analyses (BIA) for medicines, accomplished through a systematic review and assessment against identified key characteristics. Studies from 2001 to 2015 on "budget impact analysis" with "drug" interventions were assessed, selected based on their titles/abstracts and full texts, with their characteristics checked according to key criteria. Out of 1984 studies, 92 were identified. Of these, 95% were published in Europe and the USA. 2012 saw the largest number of publications (16%) with a decline thereafter. 48% met up to 6 or 7 out of the 9 key characteristics. Only 22% stated no conflict of interest. The results indicate low adherence to the key characteristics that should be considered for BIAs and strong conflict of interest. This is an issue since BIAs can be of fundamental importance in managing the entry of new medicines including reimbursement decisions

    Search for non-Gaussian events in the data of the VIRGO E4 engineering run

    Get PDF
    International audienc

    Prognostic value of increase in transcript levels of Tp73 ΔEx2-3 isoforms in low-grade glioma patients

    Get PDF
    Glial tumours are a devastating, poorly understood condition carrying a gloomy prognosis for which clinicians sorely lack reliable predictive parameters facilitating a sound treatment strategy. Tp73, a p53 family member, expresses two main classes of isoforms – transactivatory activity (TA)p73 and ΔTAp73 – exhibiting tumour suppressor gene and oncogene properties, respectively. The authors examined their expression status in high- and low-grade adult gliomas. Isoform-specific real-time reverse transcription-polymerase chain reaction was used for the analysis of Tp73 isoform transcript expression in a series of 51 adult patients harbouring glial tumours, in order to compare tumour grades with each other, and with non-tumoural samples obtained from epileptic patients as well. Our data demonstrate increase of TAp73 and ΔTAp73 transcript levels at onset and early stage of the disease. We also show that ΔEx2–3 isoform expression in low-grade tumours anticipates clinical and imaging progression to higher grades, and correlates to the patients' survival. Expression levels of P1 promoter generated Tp73 isoforms – and particularly ΔEx2–3 – indeed allow for prediction of the clinical progression of low-grade gliomas in adults. Our data are the first such molecular biology report regarding low-grade tumours and as such should be of help for sound decision-making
    • 

    corecore