756 research outputs found
Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias
The adequacy of the gamma distribution (GD) for monthly precipitation totals is reconsidered. The motivation for this study is the observation that the GD fails to represent precipitation in considerable areas of global observed and simulated data. This misrepresentation may lead to erroneous estimates of the Standardised Precipitation Index (SPI), evaluations of models, and assessments of climate change. In this study, the GD is compared to the Weibull (WD), Burr Type III (BD), exponentiated Weibull (EWD) and generalised gamma (GGD) distribution. These distributions extend the GD in terms of possible shapes (skewness and kurtosis) and the behaviour for large arguments. The comparison is based on the Akaike information criterion, which maximises information entropy and reveals a trade-off between deviation and the numbers of parameters used. We use monthly sums of observed and simulated precipitation for 12 calendar months of the year. Assessing observed and simulated data, (i) the Weibull type distributions give distinctly improved fits compared to the GD and (ii) the SPI resulting from the GD overestimates (underestimates) extreme dryness (wetness). © 2012 Author(s). CC Attribution 3.0 License
Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows
The general Ericksen-Leslie system for the flow of nematic liquid crystals is
reconsidered in the non-isothermal case aiming for thermodynamically consistent
models. The non-isothermal model is then investigated analytically. A fairly
complete dynamic theory is developed by analyzing these systems as quasilinear
parabolic evolution equations in an -setting. First, the existence of
a unique, local strong solution is proved. It is then shown that this solution
extends to a global strong solution provided the initial data are close to an
equilibrium or the solution is eventually bounded in the natural norm of the
underlying state space. In these cases, the solution converges exponentially to
an equilibrium in the natural state manifold
A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability
North Atlantic sea surface temperature anomalies are known to affect tropical Pacific climate variability and El Niño-Southern Oscillation (ENSO) through thermocline adjustment in the equatorial Pacific Ocean. Here coupled climate simulations featuring repeated idealized cycles of the Atlantic Multidecadal Oscillation (AMO) generated by nudging its tropical branch demonstrate that the tropical Pacific response to the AMO also entails a substantial decadally delayed component. The simulations robustly show multidecadal fluctuations in central equatorial Pacific sea surface temperatures lagging the AMO by about three decades and a subdecadal cold-to-warm transition of the tropical Pacific mean state during the AMO's cooling phase. The interplay between out-of-phase responses of seawater temperature and salinity in the western Pacific and associated density anomalies in local thermocline waters emerge as crucial factors of remotely driven multidecadal variations of the equatorial Pacific climate. The delayed AMO influences on tropical Pacific dynamics could help understanding past and future ENSO variability.North Atlantic sea surface temperature anomalies are known to affect tropical Pacific climate variability and El Niño-Southern Oscillation (ENSO) through thermocline adjustment in the equatorial Pacific Ocean. Here coupled climate simulations featuring repeated idealized cycles of the Atlantic Multidecadal Oscillation (AMO) generated by nudging its tropical branch demonstrate that the tropical Pacific response to the AMO also entails a substantial decadally delayed component. The simulations robustly show multidecadal fluctuations in central equatorial Pacific sea surface temperatures lagging the AMO by about three decades and a subdecadal cold-to-warm transition of the tropical Pacific mean state during the AMO's cooling phase. The interplay between out-of-phase responses of seawater temperature and salinity in the western Pacific and associated density anomalies in local thermocline waters emerge as crucial factors of remotely driven multidecadal variations of the equatorial Pacific climate. The delayed AMO influences on tropical Pacific dynamics could help understanding past and future ENSO variability. © 2016. American Geophysical Union. All Rights Reserved
Analytical and numerical validation of a plate-plate tribometer for measuring wall slip
We model the Darmstadt Slip Length Tribometer (DSLT), specially designed to
measure viscosity and slip length simultaneously for lubrication gaps in the
range of approximately 10 micrometres at relevant temperatures and surface
roughness. We investigate the inlet effect of the flow on the results by
varying the inner radius of the fluid inlet pipe. The outcomes of numerical
simulations suggest that variations in the diameter of this inner radius have
minimal impact on the results. Specifically, any alterations in the velocity
profile near the inlet, brought about by changes in the diameter, quickly
revert to the profile predicted by the analytical model. The main conclusion
drawn from this study is the validation of the Navier-Slip boundary condition
as an effective model for technical surface roughness in CFD simulations and
the negligible influence of the inlet effect on the fluid dynamics between the
tribometer's plates
On two-dimensional surface attractors and repellers on 3-manifolds
We show that if is an -diffeomorphism with a surface
two-dimensional attractor or repeller and is a
supporting surface for , then and
there is such that: 1) is a union
of disjoint tame surfaces such that every is
homeomorphic to the 2-torus . 2) the restriction of to
is conjugate to Anosov automorphism of
On the Relationship of Quantum Mechanics to Classical Electromagnetism and Classical Relativistic Mechanics
Some connections between quantum mechanics and classical physics are
explored. The Planck-Einstein and De Broglie relations, the wavefunction and
its probabilistic interpretation, the Canonical Commutation Relations and the
Maxwell--Lorentz Equation may be understood in a simple way by comparing
classical electromagnetism and the photonic description of light provided by
classical relativistic kinematics. The method used may be described as `inverse
correspondence' since quantum phenomena become apparent on considering the low
photon number density limit of classical electromagnetism. Generalisation to
massive particles leads to the Klein--Gordon and Schr\"{o}dinger Equations. The
difference between the quantum wavefunction of the photon and a classical
electromagnetic wave is discussed in some detail.Comment: 14 pages, no figures, no table
- …