69 research outputs found
Length functions on currents and applications to dynamics and counting
The aim of this (mostly expository) article is twofold. We first explore a
variety of length functions on the space of currents, and we survey recent work
regarding applications of length functions to counting problems. Secondly, we
use length functions to provide a proof of a folklore theorem which states that
pseudo-Anosov homeomorphisms of closed hyperbolic surfaces act on the space of
projective geodesic currents with uniform north-south dynamics.Comment: 35pp, 2 figures, comments welcome! Second version: minor corrections.
To appear as a chapter in the forthcoming book "In the tradition of Thurston"
edited by V. Alberge, K. Ohshika and A. Papadopoulo
Subset currents on free groups
We introduce and study the space of \emph{subset currents} on the free group
. A subset current on is a positive -invariant locally finite
Borel measure on the space of all closed subsets of consisting of at least two points. While ordinary geodesic currents
generalize conjugacy classes of nontrivial group elements, a subset current is
a measure-theoretic generalization of the conjugacy class of a nontrivial
finitely generated subgroup in , and, more generally, in a word-hyperbolic
group. The concept of a subset current is related to the notion of an
"invariant random subgroup" with respect to some conjugacy-invariant
probability measure on the space of closed subgroups of a topological group. If
we fix a free basis of , a subset current may also be viewed as an
-invariant measure on a "branching" analog of the geodesic flow space for
, whose elements are infinite subtrees (rather than just geodesic lines)
of the Cayley graph of with respect to .Comment: updated version; to appear in Geometriae Dedicat
Notes on a paper of Mess
These notes are a companion to the article "Lorentz spacetimes of constant
curvature" by Geoffrey Mess, which was first written in 1990 but never
published. Mess' paper will appear together with these notes in a forthcoming
issue of Geometriae Dedicata.Comment: 26 page
Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra
We give a method for computing upper and lower bounds for the volume of a
non-obtuse hyperbolic polyhedron in terms of the combinatorics of the
1-skeleton. We introduce an algorithm that detects the geometric decomposition
of good 3-orbifolds with planar singular locus and underlying manifold the
3-sphere. The volume bounds follow from techniques related to the proof of
Thurston's Orbifold Theorem, Schl\"afli's formula, and previous results of the
author giving volume bounds for right-angled hyperbolic polyhedra.Comment: 36 pages, 19 figure
Popularity versus Similarity in Growing Networks
Popularity is attractive -- this is the formula underlying preferential
attachment, a popular explanation for the emergence of scaling in growing
networks. If new connections are made preferentially to more popular nodes,
then the resulting distribution of the number of connections that nodes have
follows power laws observed in many real networks. Preferential attachment has
been directly validated for some real networks, including the Internet.
Preferential attachment can also be a consequence of different underlying
processes based on node fitness, ranking, optimization, random walks, or
duplication. Here we show that popularity is just one dimension of
attractiveness. Another dimension is similarity. We develop a framework where
new connections, instead of preferring popular nodes, optimize certain
trade-offs between popularity and similarity. The framework admits a geometric
interpretation, in which popularity preference emerges from local optimization.
As opposed to preferential attachment, the optimization framework accurately
describes large-scale evolution of technological (Internet), social (web of
trust), and biological (E.coli metabolic) networks, predicting the probability
of new links in them with a remarkable precision. The developed framework can
thus be used for predicting new links in evolving networks, and provides a
different perspective on preferential attachment as an emergent phenomenon
Intersection form, laminations and currents on free groups
Let be a free group of rank , let be a geodesic current
on and let be an -tree with a very small isometric action
of . We prove that the geometric intersection number is equal
to zero if and only if the support of is contained in the dual algebraic
lamination of . Applying this result, we obtain a generalization of
a theorem of Francaviglia regarding length spectrum compactness for currents
with full support. As another application, we define the notion of a
\emph{filling} element in and prove that filling elements are "nearly
generic" in . We also apply our results to the notion of \emph{bounded
translation equivalence} in free groups.Comment: revised version, to appear in GAF
On diagrammatic bounds of knot volumes and spectral invariants
In recent years, several families of hyperbolic knots have been shown to have
both volume and (first eigenvalue of the Laplacian) bounded in
terms of the twist number of a diagram, while other families of knots have
volume bounded by a generalized twist number. We show that for general knots,
neither the twist number nor the generalized twist number of a diagram can
provide two-sided bounds on either the volume or . We do so by
studying the geometry of a family of hyperbolic knots that we call double coil
knots, and finding two-sided bounds in terms of the knot diagrams on both the
volume and on . We also extend a result of Lackenby to show that a
collection of double coil knot complements forms an expanding family iff their
volume is bounded.Comment: 16 pages, 7 figure
Dirichlet fundamental domains and complex-projective varieties
We prove that for every finitely-presented group G there exists a
2-dimensional irreducible complex-projective variety W with the fundamental
group G, so that all singularities of W are normal crossings and Whitney
umbrellas.Comment: 1 figur
- âŠ