84 research outputs found

    Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts

    Get PDF
    The aim of this paper is to study the formation of carbon nanotubes (CNTs) from different Fe/MgO oxide powders that were prepared by combustion synthesis and characterized in detail in a companion paper. Depending on the synthesis conditions, several iron species are present in the starting oxides including Fe2+ ions, octahedral Fe3+ ions, Fe3+ clusters, and MgFe2O4-like nanoparticles. Upon reduction during heating at 5 °C/min up to 1000 °C in H2/CH4 of the oxide powders, the octahedral Fe3+ ions tend to form Fe2+ ions, which are not likely to be reduced to metallic iron whereas the MgFe2O4-like particles are directly reduced to metallic iron. The reduced phases are R-Fe, Fe3C, and ç-Fe-C. Fe3C appears as the postreaction phase involved in the formation of carbon filaments (CNTs and thick carbon nanofibers). Thick carbon nanofibers are formed from catalyst particles originating from poorly dispersed species (Fe3+ clusters and MgFe2O4-like particles). The nanofiber outer diameter is determined by the particle size. The reduction of the iron ions and clusters that are well dispersed in the MgO lattice leads to small catalytic particles (<5 nm), which tend to form SWNTS and DWNTs with an inner diameter close to 2 nm. Well-dispersed MgFe2O4-like particles can also be reduced to small metal particles with a narrow size distribution, producing SWNTs and DWNTs. The present results will help in tailoring oxide precursors for the controlled formation of CNTs

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Spatial variation and socio-economic determinants of Plasmodium falciparum infection in northeastern Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria due to <it>Plasmodium falciparum </it>is the leading cause of morbidity and mortality in Tanzania. According to health statistics, malaria accounts for about 30% and 15% of hospital admissions and deaths, respectively. The risk of <it>P. falciparum </it>infection varies across the country. This study describes the spatial variation and socio-economic determinants of <it>P. falciparum </it>infection in northeastern Tanzania.</p> <p>Methods</p> <p>The study was conducted in 14 villages located in highland, lowland and urban areas of Korogwe district. Four cross-sectional malaria surveys involving individuals aged 0-19 years were conducted during short (Nov-Dec) and long (May-Jun) rainy seasons from November 2005 to June 2007. Household socio-economic status (SES) data were collected between Jan-April 2006 and household's geographical positions were collected using hand-held geographical positioning system (GPS) unit. The effects of risk factors were determined using generalized estimating equation and spatial risk of <it>P. falciparum </it>infection was modelled using a kernel (non-parametric) method.</p> <p>Results</p> <p>There was a significant spatial variation of <it>P. falciparum </it>infection, and urban areas were at lower risk. Adjusting for covariates, high risk of <it>P. falciparum </it>infection was identified in rural areas of lowland and highland. Bed net coverage levels were independently associated with reduced risk of <it>P. falciparum </it>by 19.1% (95%CI: 8.9-28.2, p < 0.001) and by 39.3% (95%CI: 28.9-48.2, p < 0.001) in households with low and high coverage, respectively, compared to those without bed nets. Households with moderate and lower SES had risk of infection higher than 60% compared to those with higher SES; while inhabitants of houses built of mud walls were at 15.5% (95%CI: 0.1 - 33.3, p < 0.048) higher risk compared to those living in houses built by bricks. Individuals in houses with thatched roof had an excess risk of 17.3% (95%CI: 4.1 - 32.2, p < 0.009) compared to those living in houses roofed with iron sheet.</p> <p>Conclusions</p> <p>There was high spatial variation of risk of <it>P. falciparum </it>infection and urban area was at the lowest risk. High bed net coverage, better SES and good housing were among the important risk factors associated with low risk of <it>P. falciparum </it>infection.</p

    Prospective study on severe malaria among in-patients at Bombo regional hospital, Tanga, north-eastern Tanzania

    Get PDF
    In Tanzania, malaria is the major cause of morbidity and mortality, accounting for about 30% of all hospital admissions and around 15% of all hospital deaths. Severe anaemia and cerebral malaria are the two main causes of death due to malaria in Tanga, Tanzania. This was a prospective observational hospital-based study conducted from October 2004 to September 2005. Consent was sought from study participants or guardians in the wards. Finger prick blood was collected from each individual for thick and thin smears, blood sugar levels and haemoglobin estimations by Haemocue machine after admission. A total of 494 patients were clinically diagnosed and admitted as cases of severe malaria. Majority of them (55.3%) were children below the age of 5 years. Only 285 out of the total 494 (57.7%) patients had positive blood smears for malaria parasites. Adults aged 20 years and above had the highest rate of cases with fever and blood smear negative for malaria parasites. Commonest clinical manifestations of severe malaria were cerebral malaria (47.3%) and severe anaemia (14.6%), particularly in the under-fives. Case fatality was 3.2% and majority of the deaths occurred in the under-fives and adults aged 20 years and above with negative blood smears. Proper laboratory diagnosis is crucial for case management and reliable data collection. The non-specific nature of malaria symptomatologies limits the use of clinical diagnosis and the IMCI strategy. Strengthening of laboratory investigations to guide case management is recommended

    Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts

    Get PDF
    Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological-markers may allow the evaluation of the effectiveness of vector-control strategies or estimation of the risk of vector-borne disease transmission

    Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide-treated bed nets (ITNs) are known to be highly effective in reducing malaria morbidity and mortality. However, usage varies among households, and such variations in actual usage may seriously limit the potential impact of nets and cause spatial heterogeneity on malaria transmission. This study examined ITN ownership and underlying factors for among-household variation in use, and malaria transmission in two highland regions of western Kenya.</p> <p>Methods</p> <p>Cross-sectional surveys were conducted on ITN ownership (possession), compliance (actual usage among those who own ITNs), and malaria infections in occupants of randomly sampled houses in the dry and the rainy seasons of 2009.</p> <p>Results</p> <p>Despite ITN ownership reaching more than 71%, compliance was low at 56.3%. The compliance rate was significantly higher during the rainy season compared with the dry season (62% vs. 49.6%). Both malaria parasite prevalence (11.8% vs. 5.1%) and vector densities (1.0 vs.0.4 female/house/night) were significantly higher during the rainy season than during the dry season. Other important factors affecting the use of ITNs include: a household education level of at least primary school level, significantly high numbers of nuisance mosquitoes, and low indoor temperatures. Malaria prevalence in the rainy season was about 30% lower in ITN users than in non-ITN users, but this percentage was not significantly different during the dry season.</p> <p>Conclusion</p> <p>In malaria hypo-mesoendemic highland regions of western Kenya, the gap between ITNownership and usage is generally high with greater usage recorded during the high transmission season. Because of the low compliance among those who own ITNs, there is a need to sensitize households on sustained use of ITNs in order to optimize their role as a malaria control tool.</p

    A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands

    Get PDF
    Abstract Background The Kenyan highlands were malaria-free before the 1910s, but a series of malaria epidemics have occurred in the highlands of western Kenya since the 1980s. Longitudinal studies of the genetic structure, complexity, infection dynamics, and duration of naturally acquired Plasmodium falciparum infections are needed to facilitate a comprehensive understanding of malaria epidemiology in the complex Kenyan highland eco-epidemiological systems where malaria recently expanded, as well as the evaluation of control measures. Methods We followed a cohort of 246 children residing in 3 villages at altitudes 1430 - 1580 m in western Kenya. Monthly parasitological surveys were undertaken for one year, yielding 866 P. falciparum isolates that were analyzed using 10 microsatellite markers. Results Infection complexity and genetic diversity were high (HE = 0.787-0.816), with ≥83% of infections harboring more than one parasite clone. Diversity remained high even during the low malaria transmission season. There was no significant difference between levels of genetic diversity and population structure between high and low transmission seasons. Infection turn-over rate was high, with the average infection duration of single parasite genotypes being 1.11 months, and the longest genotype persistence was 3 months. Conclusions These data demonstrate that despite the relatively recent spread of malaria to the highlands, parasite populations seem to have stabilized with no evidence of bottlenecks between seasons, while the ability of residents to clear or control infections indicates presence of effective anti-plasmodial immune mechanisms

    Statistical Mechanics and the Physics of the Many-Particle Model Systems

    Full text link
    The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and the methods of the quantum theory of magnetism, including the method of two-time temperature Green's functions, which is widely used in various physical problems of many-particle systems with interaction. Quantum cooperative effects and quasiparticle dynamics in the basic microscopic models of quantum theory of magnetism: the Heisenberg model, the Hubbard model, the Anderson Model, and the spin-fermion model are considered in the framework of novel self-consistent-field approximation. We present a comparative analysis of these models; in particular, we compare their applicability for description of complex magnetic materials. The concepts of broken symmetry, quantum protectorate, and quasiaverages are analyzed in the context of quantum theory of magnetism and theory of superconductivity. The notion of broken symmetry is presented within the nonequilibrium statistical operator approach developed by D.N. Zubarev. In the framework of the latter approach we discuss the derivation of kinetic equations for a system in a thermal bath. Finally, the results of investigation of the dynamic behavior of a particle in an environment, taking into account dissipative effects, are presented.Comment: 77 pages, 1 figure, Refs.37
    corecore