747 research outputs found

    A generating functional for ultrasoft amplitudes in hot QCD

    Get PDF
    The effective amplitudes for gluon momentum p<<gT in hot QCD exhibit damping as a result of collisions. The whole set of n-point amplitudes is shown to be generated from one functional K(x,y;A), in addition to the induced current j(x;A).Comment: 7 pages, no figure (some comments added

    Correlation functions and dissipation in hot QCD

    Full text link
    A recently proposed generating functional allows the construction of the full set of n-point Green functions in QCD at high temperature and at distances larger than 1/gT. One may then learn how the system maintains its thermal equilibrium in the quantum field theory approach, i.e. which process compensates for the important dissipation due to collisions. This system may be characterized by quantities which have a classical limit. One finds that the fluctuations of the coloured field are not gaussian ones. A comparison is made with the semi-classical approach where a random noise is the source of fluctuations.Comment: 21 pages, latex 2e, no figure Comments added in Introduction, in Sec

    Proton-nucleus collisions in the color glass condensate framework

    Full text link
    We discuss proton-nucleus collisions in the framework of the color glass condensate. By assuming that the proton can be described as a low density color source, we solve exactly the Yang-Mills equations corresponding to this type of collision, and then use this solution in order to calculate inclusive gluon production or quark-antiquark production. Our result shows that k_T-factorization, while valid for gluon production, is violated for quark pair production in proton-nucleus collisions.Comment: Talk given at SEWM2004, Helsinki, June 200

    Violation of kT factorization in quark production from the Color Glass Condensate

    Full text link
    We examine the violation of the kT factorization approximation for quark production in high energy proton-nucleus collisions. We comment on its implications for the open charm and quarkonium production in collider experiments.Comment: 4 pages, 6 figures, contribution to proceedings of Quark Matter 2005, Budapest, Aug 4-

    Theory of antibound states in partially filled narrow band systems

    Full text link
    We present a theory of the dynamical two-particle response function in the Hubbard model based on the time-dependent Gutzwiller approximation. The results are in excellent agreement with exact diagonalization on small clusters and give reliable results even for high densities, where the usual ladder approximation breaks down. We apply the theory to the computation of antibound states relevant for Auger spectroscopy and cold atom physics. A special bonus of the theory is its computational simplicity.Comment: 4 pages, 3 figure

    Triplon mean-field analysis of an antiferromagnet with degenerate Shastry-Sutherland ground states

    Full text link
    We look into the quantum phase diagram of a spin-12\frac{1}{2} antiferromagnet on the square lattice with degenerate Shastry-Sutherland ground states, for which only a schematic phase diagram is known so far. Many exotic phases were proposed in the schematic phase diagram by the use of exact diagonalization on very small system sizes. In our present work, an important extension of this antiferromagnet is introduced and investigated in the thermodynamic limit using triplon mean-field theory. Remarkably, this antiferromagnet shows a stable plaquette spin-gapped phase like the original Shastry-Sutherland antiferromagnet, although both of these antiferromagnets differ in the Hamiltonian construction and ground state degeneracy. We propose a sublattice columnar dimer phase which is stabilized by the second and third neighbor antiferromagnetic Heisenberg exchange interactions. There are also some commensurate and incommensurate magnetically ordered phases, and other spin-gapped phases which find their places in the quantum phase diagram. Mean-field results suggest that there is always a level-crossing phase transition between two spin gapped phases, whereas in other situations, either a level-crossing or a continuous phase transition happens

    Dust Distribution during Reionization

    Full text link
    The dust produced by the first generation of stars will be a foreground to cosmic microwave background. In order to evaluate the effect of this early dust, we calculate the power spectrum of the dust emission anisotropies and compare it with the sensitivity limit of the Planck satellite. The spatial distribution of the dust is estimated through the distribution of dark matter. At small angular scales (1000\ell \gtrsim 1000) the dust signal is found to be noticeable with the Planck detector for certain values of dust lifetime and production rates. The dust signal is also compared to sensitivities of other instruments. The early dust emission anisotropies are finally compared to those of local dust and they are found to be similar in magnitude at mm wavelengths.Comment: 6 pages, 6 figures; Typos fixed. Clarifications in the abstract, sections 2 and 4.1 and fig

    Exact Calculation of Ring Diagrams and the Off-shell Effect on the Equation of State

    Full text link
    The partition function with ring diagrams at finite temperature is exactly caluclated by using contour integrals in the complex energy plane. It contains a pole part with temperature and momentum dependent mass and a phase shift part induced by off-shell effect in hot medium. The thermodynamic potentials for ϕ4\phi^4 and ϕ3\phi^3 interactions are calculated and compared with the quasi-particle (pole) approximation. It is found that the off-shell effect on the equation of state is remarkable.Comment: 7 pages, 11 figures, refereces added, final version to appear in PR

    Leakage Effect on J/psi Pt Distributions in Different Centrality Bins for Pb-Pb Collisions at E/A=160 GeV

    Full text link
    A transport approach including a leakage effect for J/psi's in the transverse phase space is used to calculate the ratios between the J/psi transverse momentum distributions in several centrality bins for Pb-Pb collisions at E/A = 160 GeV. From the comparison with the CERN-SPS data, where the centrality is characterized by the transverse energy Et, the leakage effect is extremely important in the region of high transverse momentum and high transverse energy, and both the threshold and the comover models can describe the ratio well for all centrality bins except the most central one (Et < 100 GeV), for which the comover model calculation is considerably better than the threshold one.Comment: 4 pages, 2 figures, REVTEX3.1, accepted for publication in Phys. Rev.
    corecore