2,184 research outputs found

    Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study

    Get PDF
    We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    A fourfold coordinated point defect in silicon

    Full text link
    Due to their technological importance, point defects in silicon are among the best studied physical systems. The experimental examination of point defects buried in bulk is difficult and evidence for the various defects usually indirect. Simulations of defects in silicon have been performed at various levels of sophistication ranging from fast force fields to accurate density functional calculations. The generally accepted viewpoint from all these studies is that vacancies and self interstitials are the basic point defects in silicon. We challenge this point of view by presenting density functional calculations that show that there is a new fourfold coordinated point defect in silicon that is lower in energy

    All-electron magnetic response with pseudopotentials: NMR chemical shifts

    Full text link
    A theory for the ab initio calculation of all-electron NMR chemical shifts in insulators using pseudopotentials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension to the Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50, 17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G. Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and in periodic systems by comparison with plane-wave all-electron results for diamond.Comment: 25 pages, 4 tables, submitted to Physical Review

    Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides

    Full text link
    Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied by means of fully-relativistic spin-polarized band structure calculations within the local spin-density approximation. It is found that the size of the magnetic anisotropy is fairly large (about 10 meV/unit formula), which is comparable with experiment. This strong anisotropy is discussed in view of a pseudo-gap formation, of which crucial ingredients are the exchange splitting of U 5f states and their hybridization with chalcogen p states (f-p hybridization). An anomalous trend in the anisotropy is found in the series (US>>USe<UTe) and interpreted in terms of competition between localization of the U 5f states and the f-p hybridization. It is the spin-orbit interaction on the chalcogen p states that plays an essential role in enlarging the strength of the f-p hybridization in UTe, leading to an anomalous systematic trend in the magnetic anisotropy.Comment: 4 pages, 5 figure

    First-Principles Electronic Structure of Solid Picene

    Full text link
    To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures Tc=720T_c=7 - 20 K, we have obtained a first-principles electronic structure of solid picene as a first step toward the elucidation of the mechanism of the superconductivity. The undoped crystal is found to have four conduction bands, which are characterized in terms of the maximally localized Wannier orbitals. We have revealed how the band structure reflects the stacked arrangement of molecular orbitals for both undoped and doped (K3_3picene) cases, where the bands are not rigid. The Fermi surface for K3_3picene is a curious composite of a warped two-dimensional surface and a three-dimensional one.Comment: 5 pages, 4 figure

    An Experimental and Theoretical Study of the Variation of 4f Hybridization Across the La1-xCexIn3 Series

    Full text link
    Crystal structures of a series of La1-xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an "ellipsoidal" elongation (La-rich compounds) or a "butterfly-like" distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.Comment: 7 pages, 8 figure

    Ab initio investigation of VOSeO3, a spin gap system with coupled spin dimers

    Full text link
    Motivated by an early experimental study of VOSeO3, which suggested that it is a quasi-2D system of weakly coupled spin dimers with a small spin gap, we have investigated the electronic structure of this material via density-functional calculations. These ab initio results indicate that the system is better thought of as an alternating spin-1/2 chain with moderate interchain interactions, an analog of (VO)2P2O7. The potential interest of this system for studies in high magnetic field given the presumably small value of the spin gap is emphasized.Comment: 4 pages, 5 figure

    Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation

    Full text link
    We study the effect of semicore states on the self-energy corrections and electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are computed within the GW approach, and electronic states are expanded in a plane-wave basis. For these materials, we generate {\it ab initio} pseudopotentials treating as valence states the outermost two shells of atomic orbitals, rather than only the outermost valence shell as in traditional pseudopotential calculations. The resulting direct and indirect energy gaps are compared with experimental measurements and with previous calculations based on pseudopotential and ``all-electron'' approaches. Our results show that, contrary to recent claims, self-energy effects due to semicore states on the band gaps can be well accounted for in the standard valence-only pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Phase Separation in Lix_xFePO4_4 Induced by Correlation Effects

    Full text link
    We report on a significant failure of LDA and GGA to reproduce the phase stability and thermodynamics of mixed-valence Lix_xFePO4_4 compounds. Experimentally, Lix_xFePO4_4 compositions (0x10 \leq x \leq 1) are known to be unstable and phase separate into Li FePO4_4 and FePO4_4. However, first-principles calculations with LDA/GGA yield energetically favorable intermediate compounds an d hence no phase separation. This qualitative failure of LDA/GGA seems to have its origin in the LDA/GGA self-interaction which de localizes charge over the mixed-valence Fe ions, and is corrected by explicitly considering correlation effects in this material. This is demonstrated with LDA+U calculations which correctly predict phase separation in Lix_xFePO4_4 for UJ3.5U-J \gtrsim 3.5eV. T he origin of the destabilization of intermediate compounds is identified as electron localization and charge ordering at different iron sites. Introduction of correlation also yields more accurate electrochemical reaction energies between FePO4_4/Lix_xFePO4_ 4 and Li/Li+^+ electrodes.Comment: 12 pages, 5 figures, Phys. Rev. B 201101R, 200
    corecore