154 research outputs found

    Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model

    Get PDF
    A data assimilation method capable of constraining the sea ice of an Earth system model in a dynamically consistent manner has the potential to enhance the accuracy of climate reconstructions and predictions. Finding such a method is challenging because the sea ice dynamics is highly non-linear, and sea ice variables are strongly non-Gaussian distributed and tightly coupled to the rest of the Earth system - particularly thermodynamically with the ocean. We investigate key practical implementations for assimilating sea ice concentration - the predominant source of observations in polar regions - with the Norwegian Climate Prediction Model that combines the Norwegian Earth System Model with the Ensemble Kalman Filter. The performances of the different configurations are investigated by conducting 10-year reanalyses in a perfect model framework. First, we find that with a flow-dependent assimilation method, strongly coupled ocean-sea ice assimilation outperforms weakly coupled (sea ice only) assimilation. An attempt to prescribe the covariance between the ocean temperature and the sea ice concentration performed poorly. Extending the ocean updates below the mixed layer is slightly beneficial for the Arctic hydrography. Second, we find that solving the analysis for the multicategory instead of the aggregated ice state variables greatly reduces the errors in the ice state. Updating the ice volumes induces a weak drift in the bias for the thick ice category that relates to the postprocessing of unphysical thicknesses. Preserving the ice thicknesses for each category during the assimilation mitigates the drift without degrading the performance. The robustness and reliability of the optimal setting is demonstrated for a 20-year reanalysis. The error of sea ice concentration reduces by 50% (65%), sea ice thickness by 25% (35%), sea surface temperature by 33% (23%) and sea surface salinity by 11% (25%) in the Arctic (Antarctic) compared to a reference run without assimilation

    Global warming: is weight loss a solution?

    Get PDF
    The current climate change has been most likely caused by the increased greenhouse gas emissions. We have looked at the major greenhouse gas, carbon dioxide (CO2), and estimated the reduction in the CO2 emissions that would occur with the theoretical global weight loss. The calculations were based on our previous weight loss study, investigating the effects of a low-carbohydrate diet on body weight, body composition and resting metabolic rate of obese volunteers with type 2 diabetes. At 6 months we observed decreases in weight, fat mass, fat free mass and CO2 production. We estimated that a 10 kg weight loss of all obese and overweight people would result in a decrease of 49.560 Mt of CO2 per year, which would equal to 0.2 % of the CO2 emitted globally in 2007. This reduction could help meet the CO2 emission reduction targets and unquestionably would be of a great benefit to the global health

    Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment

    Get PDF
    Here, we firstly demonstrate the potential of an advanced flow dependent data assimilation method for performing seasonal-to-decadal prediction and secondly, reassess the use of sea surface temperature (SST) for initialisation of these forecasts. We use the Norwegian Climate Prediction Model (NorCPM), which is based on the Norwegian Earth System Model (NorESM) and uses the deterministic ensemble Kalman filter to assimilate observations. NorESM is a fully coupled system based on the Community Earth System Model version 1, which includes an ocean, an atmosphere, a sea ice and a land model. A numerically efficient coarse resolution version of NorESM is used. We employ a twin experiment methodology to provide an upper estimate of predictability in our model framework (i.e. without considering model bias) of NorCPM that assimilates synthetic monthly SST data (EnKF-SST). The accuracy of EnKF-SST is compared to an unconstrained ensemble run (FREE) and ensemble predictions made with near perfect (i.e. microscopic SST perturbation) initial conditions (PERFECT). We perform 10 cycles, each consisting of a 10-yr assimilation phase, followed by a 10-yr prediction. The results indicate that EnKF-SST improves sea level, ice concentration, 2 m atmospheric temperature, precipitation and 3-D hydrography compared to FREE. Improvements for the hydrography are largest near the surface and are retained for longer periods at depth. Benefits in salinity are retained for longer periods compared to temperature. Near-surface improvements are largest in the tropics, while improvements at intermediate depths are found in regions of large-scale currents, regions of deep convection, and at the Mediterranean Sea outflow. However, the benefits are often small compared to PERFECT, in particular, at depth suggesting that more observations should be assimilated in addition to SST. The EnKF-SST system is also tested for standard ocean circulation indices and demonstrates decadal predictability for Atlantic overturning and sub-polar gyre circulations, and heat content in the Nordic Seas. The system beats persistence forecast and shows skill for heat content in the Nordic Seas that is close to PERFECT
    corecore