481 research outputs found

    Magnetotail structures in a simulated Earth's magnetosphere

    Get PDF
    The structure of the magnetotail is investigated in a laboratory simulated magnetosphere. Particular emphasis is placed on the region of distant magnetotail where the closed field line region of the plasma sheet terminates and the process of reconnection takes place. Our study builds upon the previous investigation of the magnetotail where the main results were based on the magnetic field measurements in the tail region of the simulated magnetosphere. In this paper, more elaborate measurements of plasma flow and electric field are presented. Besides these measurements, this region of distant magnetotail is also explored by high resolution imaging with a gated optical imager (GOI) and by digital image analysis. These images clearly reveal a Y-type magnetic neutral line for the northward 'interplanetary' field (IMF) and a usual X-type for the southward IMF that confirms our previous results deduced from the magnetic field measurements. In the neighborhood of these neutral points a strong component of dawn to dusk electric field (E(sub y)) and a counterstreaming plasma flow is also observed. Plasma flow is measured by using a double sided Faraday cup which is also used to measure the y-component of tail current (J(sub y)) at different locations. These measurements reveal that the tail current is not carried by ions as previously thought, rather it is carried by electrons alone

    Electron Power-Law Spectra in Solar and Space Plasmas

    Full text link
    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law, it remains unclear how electrons are accelerated to high energies and what processes determine the power-law index δ\delta. Here, we review previous observations of the power-law index δ\delta in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the `above-the-looptop' solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ\delta \gtrsim 4). This is in contrast to the typically hard spectra (δ\delta \lesssim 4) that are observed in coincidence with shocks. The difference implies that shocks are more efficient in producing a larger non-thermal fraction of electron energies when compared to magnetic reconnection. A caveat is that during active times in Earth's magnetotail, δ\delta values seem spatially uniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.Comment: 67 pages, 15 figures; submitted to Space Science Reviews; comments welcom

    Remote ischaemic conditioning and early changes in plasma creatinine as markers of one year kidney graft function-A follow-up of the CONTEXT study

    Get PDF
    Background Ischaemia-reperfusion injury in kidney transplantation leads to delayed graft function (DGF), which is associated with reduced long term graft function. Remote ischaemic conditioning (RIC) improved early kidney graft function in a porcine model of donation after brain death and was associated with improved long-term cardiac outcome after myocardial ischaemia. This randomised, double-blinded trial evaluated the effect of RIC on kidney graft outcome in the first year, and examined the predictive value of a new measure of initial kidney graft function, i.e. the estimated time to a 50% reduction in plasma creatinine post-transplantation (tCr50). Methods A total of 225 patients undergoing deceased donor kidney transplantation were randomised to RIC or a sham procedure performed prior to kidney reperfusion. Up to four repetitive cycles of five minutes of leg ischaemia and five minutes of reperfusion were given. GFR, plasma creatinine, cystatin C and neutrophil gelatinase associated lipocalin (NGAL) were measured at three and twelve months and estimated GFR was calculated using four different equations. Other secondary outcomes were identified from patient files. Results RIC did not affect GFR or other outcomes when compared to the sham procedure at three or twelve months. tCr50 correlated with one year graft function (p Conclusion RIC during deceased donor kidney transplantation did not improve one year outcome. However, tCr50 may be a relevant marker for studies aiming to improve graft onset

    Diamagnetic Suppression of Component Magnetic Reconnection at the Magnetopause

    Full text link
    We present particle-in-cell simulations of collisionless magnetic reconnection in a system (like the magnetopause) with a large density asymmetry across the current layer. In the presence of an ambient component of the magnetic field perpendicular to the reconnection plane the gradient creates a diamagnetic drift that advects the X-line with the electron diamagnetic velocity. When the relative drift between the ions and electrons is of the order the Alfven speed the large scale outflows from the X-line necessary for fast reconnection cannot develop and the reconnection is suppressed. We discuss how these effects vary with both the plasma beta and the shear angle of the reconnecting field and discuss observational evidence for diamagnetic stabilization at the magnetopause.Comment: 10 pages, 10 figures; accepted by JGR; agu2001.cls and agu.bst include

    Dynamical derivation of Bode's law

    Get PDF
    In a planetary or satellite system, idealized as n small bodies in initially coplanar, concentric orbits around a large central body, obeying Newtonian point-particle mechanics, resonant perturbations will cause dynamical evolution of the orbital radii except under highly specific mutual relationships, here derived analytically apparently for the first time. In particular, the most stable situation is achieved (in this idealized model) only when each planetary orbit is roughly twice as far from the Sun as the preceding one, as observed empirically already by Titius (1766) and Bode (1778) and used in both the discoveries of Uranus (1781) and the Asteroid Belt (1801). ETC.Comment: 27 page

    Particle acceleration by magnetic reconnection in geospace

    Full text link
    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.Comment: Submitted to Space Science Review

    Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence

    Full text link
    Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion Larmor radius, the ions do not respond to the reconnection dynamics leading to ''electron-only'' reconnection with very large quasi-steady reconnection rates. The transition to more traditional ''ion-coupled'' reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasi-steady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths

    Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    Get PDF
    We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data

    Alfvénic wave heating of the upper chromosphere in flares

    Get PDF
    We have developed a numerical model of flare heating due to the dissipation of Alfv\'enic waves propagating from the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the corona. We therefore find three important conclusions: (1) Alfv\'enic waves, propagating from the corona to the chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to heating due to the dissipation of Alfv\'enic waves can be strikingly similar to heating by an electron beam, and (3) this heating can produce explosive evaporation.Comment: Accepted to ApJ
    corecore