13 research outputs found

    Plasma proteome profiling identifies changes associated to AD but not to FTD

    Get PDF
    Background Frontotemporal dementia (FTD) is caused by frontotemporal lobar degeneration (FTLD), characterized mainly by inclusions of Tau (FTLD-Tau) or TAR DNA binding43 (FTLD-TDP) proteins. Plasma biomarkers are strongly needed for specific diagnosis and potential treatment monitoring of FTD. We aimed to identify specific FTD plasma biomarker profiles discriminating FTD from AD and controls, and between FTD pathological subtypes. In addition, we compared plasma results with results in post-mortem frontal cortex of FTD cases to understand the underlying process. Methods Plasma proteins (n = 1303) from pathologically and/or genetically confirmed FTD patients (n = 56; FTLD-Tau n = 16; age = 58.2 +/- 6.2; 44% female, FTLD-TDP n = 40; age = 59.8 +/- 7.9; 45% female), AD patients (n = 57; age = 65.5 +/- 8.0; 39% female), and non-demented controls (n = 148; 61.3 +/- 7.9; 41% female) were measured using an aptamer-based proteomic technology (SomaScan). In addition, exploratory analysis in post-mortem frontal brain cortex of FTD (n = 10; FTLD-Tau n = 5; age = 56.2 +/- 6.9, 60% female, and FTLD-TDP n = 5; age = 64.0 +/- 7.7, 60% female) and non-demented controls (n = 4; age = 61.3 +/- 8.1; 75% female) were also performed. Differentially regulated plasma and tissue proteins were identified by global testing adjusting for demographic variables and multiple testing. Logistic lasso regression was used to identify plasma protein panels discriminating FTD from non-demented controls and AD, or FTLD-Tau from FTLD-TDP. Performance of the discriminatory plasma protein panels was based on predictions obtained from bootstrapping with 1000 resampled analysis. Results Overall plasma protein expression profiles differed between FTD, AD and controls (6 proteins; p = 0.005), but none of the plasma proteins was specifically associated to FTD. The overall tissue protein expression profile differed between FTD and controls (7-proteins; p = 0.003). There was no difference in overall plasma or tissue expression profile between FTD subtypes. Regression analysis revealed a panel of 12-plasma proteins discriminating FTD from AD with high accuracy (AUC: 0.99). No plasma protein panels discriminating FTD from controls or FTD pathological subtypes were identified. Conclusions We identified a promising plasma protein panel as a minimally-invasive tool to aid in the differential diagnosis of FTD from AD, which was primarily associated to AD pathophysiology. The lack of plasma profiles specifically associated to FTD or its pathological subtypes might be explained by FTD heterogeneity, calling for FTD studies using large and well-characterize cohorts

    Prediction of Liquid Density by Gamma-Ray Measurement for Materials with Low Atomic Number

    No full text
    A new method has been developed and evaluated for density measurement of liquid materials based on conventional gamma density meter, whether a low strength gamma radioactive source as the backscatter technique with collimated detector cannot be properly used for density measurement. In this comparative study, proposed method aimed to improve the linearity of the density measurement without using time consuming spectroscopy. Both transmission and backscatter methods for density measurement were used together in a combined model. The whole measurement system was designed, constructed and simulated for nuclear gamma�gamma density measurement. MCNP modeling results were benchmarked with experimental data, showing a good correlation between combined density measurement method and conventional transmission density measurement while values of MRE(), RMSE and MAE() are lower in combined model. This study shows that, MRE() in combined model, and for both experimental and simulation results, is improved with the average of about 41 in comparison with the conventional density measurement. Also in this comparative study, RMSE decreased significantly about 56. Additionally, average MAE () reduced about 36. Furthermore, R-square values were also improved in both experimental and simulation results. Evaluating different methods of nuclear density measurements led us to propose an innovative formula, to investigate an accurate density measurement. This paper discusses advantages of proposed model in comparison with the conventional transmission method for gamma interaction with lower percentage errors and better calibration curve fitting. © 2020, Metrology Society of India

    Magnetic resonance imaging-based target volume delineation in radiation therapy treatment planning for brain tumors using localized region-based active contour

    No full text
    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists' contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer. © 2013 Elsevier Inc

    Sex differences in memory clinic patients with possible vascular cognitive impairment

    Get PDF
    Introduction: We aimed to establish sex differences in vascular brain damage of memory clinic patients with possible vascular cognitive impairment (VCI). Methods: A total of 860 memory clinic patients (aged 67.7 ± 8.5; 46% female) with cognitive complaints and vascular brain damage (ie, possible VCI) from the prospective TRACE-VCI (Utrecht-Amsterdam Clinical Features and Prognosis in Vascular Cognitive Impairment) cohort study with 2-year follow-up were included. Age-adjusted female-to-male differences were calculated with general linear models, for demographic variables, vascular risk factors, clinical diagnosis, cognitive performance, and brain magnetic resonance imaging markers. Results: We found no difference in age nor distribution of clinical diagnoses between females and males. Females performed worse on the MMSE (Mini-Mental State Examination) and CAMCOG (Cognitive and Self-Contained Part of the Cambridge Examination for Mental Disorders of the Elderly). Females had a larger white matter hyperintensity volume, while males more often showed (lacunar) infarcts. There was no difference in microbleed prevalence. Males had smaller normalized total brain and gray matter volumes. During follow-up, occurrence of cognitive decline and institutionalization was comparable, but mortality was higher in males. Discussion: Our results suggest that susceptibility and underlying etiology of VCI might differ by sex. Males seem to have more large vessel brain damage compared to females that have more small vessel brain damage

    Sex differences in memory clinic patients with possible vascular cognitive impairment

    No full text
    Introduction: We aimed to establish sex differences in vascular brain damage of memory clinic patients with possible vascular cognitive impairment (VCI). Methods: A total of 860 memory clinic patients (aged 67.7 ± 8.5; 46% female) with cognitive complaints and vascular brain damage (ie, possible VCI) from the prospective TRACE-VCI (Utrecht-Amsterdam Clinical Features and Prognosis in Vascular Cognitive Impairment) cohort study with 2-year follow-up were included. Age-adjusted female-to-male differences were calculated with general linear models, for demographic variables, vascular risk factors, clinical diagnosis, cognitive performance, and brain magnetic resonance imaging markers. Results: We found no difference in age nor distribution of clinical diagnoses between females and males. Females performed worse on the MMSE (Mini-Mental State Examination) and CAMCOG (Cognitive and Self-Contained Part of the Cambridge Examination for Mental Disorders of the Elderly). Females had a larger white matter hyperintensity volume, while males more often showed (lacunar) infarcts. There was no difference in microbleed prevalence. Males had smaller normalized total brain and gray matter volumes. During follow-up, occurrence of cognitive decline and institutionalization was comparable, but mortality was higher in males. Discussion: Our results suggest that susceptibility and underlying etiology of VCI might differ by sex. Males seem to have more large vessel brain damage compared to females that have more small vessel brain damage
    corecore