4,087 research outputs found
Photochemistry in the arctic free troposphere: NOx budget and the role of odd nitrogen reservoir recycling
The budget of nitrogen oxides (NOx) in the arctic free troposphere is calculated with a constrained photochemical box model using aircraft observations from the Tropospheric O3 Production about the Spring Equinox (TOPSE) campaign between February and May. Peroxyacetic nitric anhydride (PAN) was observed to be the dominant odd nitrogen species (NOy) in the arctic free troposphere and showed a pronounced seasonal increase in mixing ratio. When constrained to observed acetaldehyde (CH3CHO) mixing ratios, the box model calculates unrealistically large net NOx losses due to PAN formation (62pptv/day for May, 1-3km). Thus, given our current understanding of atmospheric chemistry, these results cast doubt on the robustness of the CH3CHO observations during TOPSE. When CH3CHO was calculated to steady state in the box model, the net NOx loss to PAN was of comparable magnitude to the net NOx loss to HNO3 (NO2 reaction with OH) for spring conditions. During the winter, net NOx loss due to N2O5 hydrolysis dominates other NOx loss processes and is near saturation with respect to further increases in aerosol surface area concentration. NOx loss due to N2O5 hydrolysis is sensitive to latitude and month due to changes in diurnal photolysis (sharp day-night transitions in winter to continuous sun in spring for the arctic). Near NOx sources, HNO4 is a net sink for NOx; however, for more aged air masses HNO4 is a net source for NOx, largely countering the NOx loss to PAN, N2O5 and HNO3. Overall, HNO4 chemistry impacts the timing of NOx decay and O3 production; however, the cumulative impact on O3 and NOx mixing ratios after a 20-day trajectory is minimal. © 2003 Elsevier Science Ltd. All rights reserved
Photochemistry in the arctic free troposphere: Ozone budget and its dependence on nitrogen oxides and the production rate of free radicals
Abstract. Local ozone production and loss rates for the arctic free troposphere (58–85 ◦ N, 1–6 km, February–May) during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 km layer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratios up to ∼300 pptv in February and for NOx mixing ratio
EFFICIENT MODULAR IMPLEMENTATION OF BRANCH-AND-BOUND ALGORITHMS *
This paper demonstrates how branch-and-bound algorithms can be modularized to obtain implementation efficiencies. For the manager, this advantage can be used to obtain faster implementation of algorithm results; for the scientist, it allows efficiencies in the construction of similar algorithms with different search and addressing structures for the purpose of testing to find a preferred algorithm. The demonstration in part is achieved by showing how the computer code of a central module of logic can be transported between different algorithms that have the same search strategy. Modularizations of three common searches (the best-bound search and two variants of the last-in-first-out search) with two addressing methods are detailed and contrasted. Using four assembly line balancing algorithms as examples, modularization is demonstrated and the search and addressing methods are contrasted. The application potential of modularization is broad and includes linear programming-based integer programming. Benefits and disadvantages of modularization are discussed. Computational results demonstrate the viability of the method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75538/1/j.1540-5915.1988.tb00251.x.pd
Comparisons of trace constituents from ground stations and the DC-8 aircraft during PEM-West B
Chemical data from ground stations in Asia and the North Pacific are compared with data from the DC-8 aircraft collected during the Pacific Exploratory Measurements in the Western Pacific Ocean (PEM-West B) mission. Ground station sampling took place on Hong Kong, Taiwan, Okinawa, and Cheju; and at three Pacific islands, Shemya, Midway, and Oahu. Aircraft samples were collected during 19 flights, most over the western North Pacific. Aluminum was used as an indicator of mineral aerosol, and even though the aircraft did sample Asian dust, strong dust storms were not encountered. The frequency distribution for non-sea-salt sulfate (nss SO4=) in the aircraft samples was bimodal: the higher concentration mode (∼1 μg m−3) evidently originated from pollution or, less likely, from volcanic sources, while the lower mode, with a peak at 0.040 μg m−3, probably was a product of biogenic emissions. In addition, the concentrations of aerosol sulfate varied strongly in the vertical: arithmetic mean SO4=concentrations above 5000 m ( = 0.21±0.69 μg m−3) were substantially lower than those below ( = 1.07±0.87 μg m−3), suggesting the predominance of the surface sources. Several samples collected in the stratosphere exhibited elevated SO4=, however, probably as a result of emissions from Mount Pinatubo. During some boundary layer legs on the DC-8, the concentrations of CO and O3 were comparable to those of clean marine air, but during other legs, several chemically distinct air masses were sampled, including polluted air in which O3was photochemically produced. In general, the continental outflow sampled from the aircraft was substantially diluted with respect to what was observed at the ground stations. Higher concentrations of aerosol species, O3, and CO at the Hong Kong ground station relative to the aircraft suggest that much of the continental outflow from southeastern Asia occurs in the lower troposphere, and extensive long-range transport out of this part of Asia is not expected. In comparison, materials emitted farther to the north apparently are more susceptible to long-range transport
Recommended from our members
Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer
Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March-May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOx chemistry is only active during the early stage Of O3 depletion (O3 > 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages Of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere
Automating the measurement of physiological parameters: a case study in the image analysis of cilia motion
International audienceAs image processing and analysis techniques improve, an increasing number of procedures in bio-medical analyses can be automated. This brings many benefits, e.g improved speed and accuracy, leading to more reliable diagnoses and follow-up, ultimately improving patients outcome. Many automated procedures in bio-medical imaging are well established and typically consist of detecting and counting various types of cells (e.g. blood cells, abnormal cells in Pap smears, and so on). In this article we propose to automate a different and difficult set of measurements, which is conducted on the cilia of people suffering from a variety of respiratory tract diseases. Cilia are slender, microscopic, hair-like structures or organelles that extend from the surface of nearly all mammalian cells. Motile cilia, such as those found in the lungs and respiratory tract, present a periodic beating motion that keep the airways clear of mucus and dirt. In this paper, we propose a fully automated method that computes various measurements regarding the motion of cilia, taken with high-speed video-microscopy. The advantage of our approach is its capacity to automatically compute robust, adaptive and regionalized measurements, i.e. associated with different regions in the image. We validate the robustness of our approach, and illustrate its performance in comparison to the state-of-the-art
Recommended from our members
Sources of upper tropospheric HOx over the South Pacific Convergence Zone: A case study
Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer
Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March–May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOxchemistry is only active during the early stage of O3 depletion (O3 \u3e 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere
- …